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TCR-pMHC Binding Specificity Prediction from
Structure Using Graph Neural Networks
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Abstract—The mapping of T-cell-receptors (TCRs) to their
cognate peptides is crucial to improving cancer immunotherapy.
Numerous computational methods and machine learning tools
have been proposed to aid in the task. Yet, accurately constructing
this map computationally remains a difficult problem. Most
prior work has sought to predict TCR-peptide-MHC (TCR-
pMHC) binding specificity by analyzing the amino acid sequences
of the TCRs and peptides. However, recent advancements in
crystallography, cryo-EM, and in silico protein modeling have
provided researchers with the necessary data to analyze the
3D structures of TCRs, peptides, and MHCs. Current research
suggests that information contained in the 3D structure of the
TCRs and pMHCs can explain instances of TCR specificity
that are not explained by sequence alone. As protein structure
data continues to become more accurate and easier to obtain,
structure-based methodologies for predicting TCR-pMHC bind-
ing will become increasingly important. We present STAG, a
novel graph-based machine learning architecture for predicting
TCR-pMHC binding specificity using 3D structure data. We
show that STAG achieves comparable or better performance than
existing methods while utilizing only spatial and physicochemical
features from modeled protein structures.

Index Terms—structural bioinformatics, immunology, geomet-
ric deep learning, TCR-pMHC

I. INTRODUCTION

The recent success of immunotherapy treatments relies
largely on T-cells recognizing tumor-associated peptides
presented by Major Histocompatibility Complexes (MHCs)
through their T cell receptors (TCRs) [1]. Successful TCR-
pMHC binding prediction can aid in immunotherapies as a
first step in tumor antigen vaccine development, the design of
better adoptive cell therapy, or the engineering of TCRs that
target cancer more effectively. In practice, in silico methods
for predicting TCR-pMHC interactions are often used to
triage expensive and time-consuming wet-lab experiments,
meaning that any increase in prediction accuracy can re-
sult in fewer failed experiments and faster development of
treatments for patients. Thus, predicting TCR-peptide-MHC
(TCR-pMHC) binding specificity is key to improving these
cancer immunotherapy treatments. Greater understanding of
what drives TCR-pMHC binding will also shed light on how
the immune system functions, improving vaccine development
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and drug design. Accordingly, the task of predicting TCR-
pMHC interactions in silico is referred to as the “holy grail
of systems immunology” [2]. An example of a TCR-pMHC
complex is shown in Figure 1.

In spite of the tremendous implications of accurately pre-
dicting TCR-pMHC binding specificity, doing so has remained
a formidable task. This difficulty is largely due to the com-
plexity of the system. There are estimated to be more than
107 unique TCRs in each individual [3] and TCRs may be
presented with any of over 209 possible peptides bound to one
of the over 25,000 MHCs [4]. This immense diversity leads
to a dauntingly large search space when screening for po-
tential TCR-pMHC interactions and necessitates sophisticated
computational methods to aid in the task. What computational
methods to use and how best to encode features from the TCR
and pMHC when predicting TCR-pMHC binding specificity
remains an open problem [2].

Throughout this work, we differentiate between two distinct
data modalities that may be used for predicting TCR-pMHC
binding patterns: 3D-protein structure data and amino acid
sequence data. Like all proteins, TCRs, peptides, and MHCs
may be represented by their amino acid sequences. However,
there is a 3D structure to proteins once folded that has been
shown to explain behaviors not captured by sequence alone
[5]. Machine learning (ML) methods that use structure have
achieved state-of-the-art results over sequence methods in
tasks such as protein binding site prediction [6] and protein
function prediction [7]. In the case of TCRs and pMHCs, it has
been shown that structural attributes, such as the conformation
of the peptide and the different angles at which the TCR can
bind to the MHC, can account for cases of one TCR reacting
with multiple pMHCs [5], [8]. This phenomenon is known
as cross-reactivity and is not always apparent from sequence-
based analysis [9]. Furthermore, structure-based methodolo-
gies offer greater interpretability than methods trained on
sequence alone [10]. Still, current ML tools for predicting
binding pairs of TCR-pMHCs are designed almost exclusively
around protein sequence data. This is largely because sequence
data for TCR-pMHCs can be easily obtained through advanced
high throughput sequencing methodologies and is thus more
abundant than structure data. Yet experimental methods for
determining protein structure, such as cryo-EM, have become
less expensive and more accurate in recent years. As a result,
the number of solved TCR structures has nearly tripled over
the last 10 years [11]. Additionally, tools such as AlphaFold2
[12] now facilitate accurate protein modeling in silico.

Structure-based methodologies for predicting TCR-pMHC
binding will become increasingly useful as protein structure
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Fig. 1. Structure of the TCR-pMHC complex: TCR α chain in purple, TCR
β chain in pink, CDR loops of the TCR in orange, peptide in yellow, MHC
α chain in blue, and the β2-microglobulin of the MHC in cyan.

data continue to become easier to obtain and more accurate.
The question is, how useful is the structure data currently
available for predicting TCR-pMHC binding specificity, partic-
ularly the data that comes from in silico protein modeling. Our
work seeks to answer this question by utilizing modeled 3D
structures of TCRs and pMHCs to predict binding specificity.
In order to make these predictions, we have developed a
novel ML architecture that uses graph neural networks to
predict TCR-pMHC binding from structure data, which we
call STAG: Structural TCR And pMHC binding specificity
prediction Graph neural network. In this work, we evaluate
STAG against other uni-modal methods for predicting TCR-
pMHC binding specificity from protein structure data. We
also evaluate STAG and other structure-based approaches
against uni-modal methods for predicting TCR-pMHC binding
specificity from amino acid sequences. We show that STAG
achieves better performance in predicting TCR-peptide-MHC
binding specificity than other structure-based methods and of-
fers improved interpretability compared to existing sequence-
based methods.

II. PREVIOUS WORK

A. TCR-pMHC Binding Specificity Prediction

Being able to accurately predict TCR-pMHC binding in sil-
ico could lead to significant advancements in cancer treatment,
drug design, vaccine development, and medicine as a whole.
As such, there has been a large amount of work done to de-
velop ML methods that can provide accurate and interpretable
predictions for this task [13]–[35]. The overwhelming majority
of these methods are uni-modal and only consider the amino
acid sequence of the TCR and the peptide. Many of these
methods consider only the CDR3β region of the TCR.

In this work, we compare our method to two prominent
sequence-based ML models, NetTCR 2.2 [21] and ERGO II

[20]. NetTCR 2.2 and ERGO II are extensions of the tools
NetTCR [36] and ERGO [34] respectively, expanded to be able
to train on paired TCRα chain and TCRβ chain sequences.
Since information from both the α and β chains is contained in
the protein structure, benchmarking against methods that only
take the TCR’s CDR3β chain into account would likely bias
the results in favor of our method [17], [20]. Importantly, at the
time of writing, ERGO II and NetTCR 2.2 are among the state-
of-the-art for TCR-pMHC specificity prediction. ERGO II has
been shown to have comparable or even better performance
than the latest methods to predict binding specificity using
large language models (LLMs) [14], depending on the datasets
used.

While the majority of ML approaches to TCR-pMHC in-
teraction prediction take amino acid sequences as input, there
has been promising work that seeks to learn from the structure
of the proteins as well [18], [23], [27], [29], [37]. Nearly
all work taking TCR-pMHC structures as input have built
their predictions around the inter-protein contacts between the
TCR and the pMHC. Contacts were used alongside sequence
information as part of the input to a random forest model
that predicts the affinities between TCRs and pMHCs that
are previously known to bind [23]. Another work trained a
support vector machine on contact information and sequence
data [29]. However, there is no open-source implementation
of these methods that can be retrained on external data, so
they will not be considered here. The tool RACER [27] uses
contacts to train a custom scoring function to discriminate
strong from weak binders (see Section 3 in Supplementary
Material). In this work, we benchmark against the RACER
protocol for predicting TCR-pMHC specificity.

B. TCR-pMHC Modeling

While there are experimentally known 3D structures for
hundreds of TCR-pMHC complexes, these hardly represent
enough data points to train a reliable ML model. Thankfully,
our ability to accurately model TCR-pMHC complexes has
increased dramatically in recent years. In this work we utilize
computational models of TCRs and pMHCs as input when
trying to predict TCR-pMHC binding patterns from protein
structure data. Various protocols have been published that
produce accurate structural models of TCR-pMHCs from
sequence information [18], [38]–[40]. These make it possible
to build large structure datasets, such as the ones used in this
study. Owing to the high computational cost of running some
of these tools, we chose to model most of the TCRs and
pMHCs in this work with the higher throughput protocols
TCRpMHCmodels [38] and immune-scape [39] so as to
have large enough datasets to make a fair comparison when
retraining the existing methods.

C. Structural Proteomics

Graph neural networks have achieved state-of-the-art perfor-
mance in a variety of proteomics problems, including protein-
protein docking [6], protein-ligand docking [41], protein-
ligand binding affinity prediction [42], and protein function
prediction [7]. All of these methods work by first encoding
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the protein’s 3D structure as a graph where nodes represent
individual atoms or amino acids in the protein. Edges between
the nodes are then defined according to their distances from
one another or other relationships present within the pro-
tein. Graph neural networks then utilize message passing to
aggregate information between connected nodes along their
edges and reason about the graph as a whole. The poten-
tial of this approach to capture the geometry and important
physicochemical relationships within proteins is evident in the
impressive performance of graph neural networks on various
proteomics tasks, such as those mentioned above. Our model,
STAG, builds on this previous work by applying a novel
graph convolutional neural network to the task of TCR-pMHC
binding specificity prediction.

3D convolutional neural networks (3D-CNNs) are another
prominent ML architecture used with protein structure data
[43]–[45]. Yet, to our knowledge there is no prior work apply-
ing 3D-CNNs to the task of TCR-pMHC binding prediction. In
this work, we develop as a baseline a novel 3D-CNN pipeline
that predicts TCR-pMHC binding specificity from structure
data. To compare our graph-based method to 3D-CNNs, STAG
was benchmarked against the 3D-CNN pipeline developed
as part of this work. Further details on the implementation
of the 3D-CNN pipeline can be found in Section 2 of the
Supplementary Material.

D. Establishing fair benchmarks for TCR-pMHC binding pre-
diction with ML methods

To date, there are no large gold standard datasets for fair
benchmarking of TCR-pMHC binding predictors. Previous
work that tried to benchmark different tools suffered from
critical inconsistencies. These include differing biases in the
training data or a limited number of unseen TCR-pMHCs that
can be used to test against previously published tools. In one
work, for example, a test set of only 59 TCR-pMHC pairs
was reserved to compare with NetTCR [28]. As these tools
are trained using tens of thousands of samples, utilizing only
a few dozen data points to compare them makes it difficult to
derive conclusions about their relative usefulness with a high
degree of certainty. In another work, the importance of training
and testing tools on the same dataset regardless of size was
evident, as NetTCR achieved an AUC of only 0.518 on the
testing dataset in the paper when used “out of the box” but
an AUC of 0.931 when retrained using the training dataset
in the paper [16]. Similar variability in performance has been
reported for other tools when applied to new datasets without
retraining [46]. Such drastic differences in performance make
it essential to train models on identical datasets and have
large mutual testing sets before drawing conclusions about
their relative effectiveness in predicting TCR-pMHC binding
specificity. In this work, we take care to utilize the same testing
and training sets for all computational methods compared. This
gives a fairer comparison of the various tools considered and
allows for an accurate assessment of their relative strengths
and weaknesses. We make these datasets public for others to
utilize in future benchmarks.

III. METHODS

A. STAG

STAG is a machine learning framework that utilizes a graph
neural network for classifying binding and non-binding TCR-
pMHC pairs from protein structure data.

1) Graph Representation: In TCR-pMHC interactions, we
always know where the interaction site is (see Figures 1
& 2). The distal part of the TCR, comprised of the CDR
loops, comes into contact with the peptide and the MHC cleft,
as shown in Figure 1. To take full advantage of this prior
knowledge, we construct an interaction graph considering only
residues at the interaction site. To do this, we discard any
residues from the TCR that are more than 14Å away from the
nearest pMHC residue in our 3D model. We also discard any
residues from the MHC that are more than 14Å away from
the nearest TCR residue in our 3D model. Discarded residues
are colored grey in Figure 2. Restricting our input to only
include residues at the interaction site reduces the presence of
noise and artifacts in the training data and improves model
performance.

The TCR, peptide, and MHC are comprised of amino acids
folded together in 3D space. To capture the geometry of these
structures, STAG uses a graph representation G = (V,E)
similar to [47] where each node vi ∈ V represents one residue
and has 3D coordinates xi ∈ R3 centered at the carbon-α atom
of the residue. Edges between nodes are defined by a radius
graph of 8Å meaning that only residues less than 8Å away
from one another in the 3D structure will be connected in the
graph. Note that the graph is constructed only from residues
at the binding site, while other residues in the complex are
discarded as described above.

Fig. 2. Graph encoding of the interaction site for a TCR and pMHC. The
structure of the TCR-pMHC complex is shown on the left. The interaction
site is colored (TCR - top, pink; peptide - middle, yellow; MHC - bottom,
blue). Each amino acid in the complex (left) is mapped to a node in the graph
(right).

The value of each node in our graph representation of the
TCR-pMHC complex is a vector encoding the physicochemi-
cal properties of the amino acid represented by that node. To
encode these properties, we use the Atchly [48] and Kidera
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[49] factors, vector representations of the 20 canonical amino
acids derived from their physical and chemical properties. The
nodes also encode parent chain information as a 1-hot vector
indicating whether the node is part of the TCR-α chain, TCR-
β chain, MHC, or peptide.

Edges encode the Euclidean distance between amino acids
using radial basis functions. The set of radial basis functions
converts scalar distance d to a vector in Rn, as shown in
Equation 1. n = 15 was used for the benchmarking done in
this work. Vector representations of distance, such as the one
used here, have been shown to be better for training neural
networks than scalar distances [6]. Edges also denote whether
the connected nodes are inter or intra chain nodes via a 1-hot
encoding. This edge encoding was inspired in part by previous
work [6].

fd→Rn = e
−
(

d2

r⃗

)
r⃗ = {1.5i|i = 0, 1, 2, ..., n}

(1)

The resulting graph captures the geometry of the given
TCR-pMHC complex at the binding site. Importantly, this
graph representation is SE(3) invariant with respect to the
input complex, meaning that the output of the network will
not be affected by rigid body transformations of the input
TCR-pMHC complex. This invariance means that no structural
alignment of our input is necessary.

We experimented with more complex node and edge fea-
tures, such as the relative orientation features proposed in
[6], however, we found that these additional features did not
result in improved performance for our task. This may be
due to such feature encodings having a higher sensitivity to
noise in the models. Additionally, we chose to focus only
on structural and physicochemical properties as possible node
features for STAG. Not incorporating features derived from
amino acid sequences allows us to better compare the merits
of graph convolutional neural networks against other uni-
modal classifiers trained on structure data and acquire a better
understanding of how to leverage structural information in
TCR-pMHC binding specificity prediction.

2) Graph Convolution Operator: In this work, we make
use of what we have termed the Edge-Variable-Transformer
(EVT) convolution, shown in Equation 2. To our knowledge,
this is the first use of this convolutional operator. Edge variable
convolutions were first proposed in [50] as an effective graph
convolution that provided added model interpretability. Here,
we augment this convolution with an attention mechanism.

x′
i = Θ0xi +

∑
j∈N (i)

αi,j(xj · hΘ1
(eij))

αi,j = softmax
(
(Θ2xi)

⊤Θ3xj√
d

) (2)

Each Θ is a learnable weight matrix while hΘ is a Multi-
Layer-Perceptron (MLP) that learns a mapping from an edge
vector eij to a weight matrix. The values of each Θ and hΘ are
initialized using Xavier initialization [51] and learned through
stochastic gradient descent during training. xi is the central
node and the xj are the neighboring nodes of xi, N (i). d is
the dimension of the softmax output and the values passed to
the softmax function are scaled by

√
d for numerical stability.

3) Graph Convolutional Neural Network: The architecture
of STAG is shown in Figure 3. Given an input graph, con-
structed as described above, an MLP consisting of linear, non-
linear, and regularization layers is first applied to the nodes.
Next, each edge has the values of its sender and receiver
nodes concatenated to it. The edges are then passed through an
MLP comprised of linear, non-linear, and regularization layers.
Then, the graph is passed through three message passing graph
convolutional blocks, each made up of a graph convolution,
layer normalization, and a non-linearity. Finally, global mean
pooling is applied to all node values and the result is passed
through fully connected layers to return a binary prediction.
Layer normalization and dropout are applied as regularization
methods throughout the architecture to prevent over-fitting. It
is worth noting here that STAG has considerably fewer layers
than some other graph neural networks used in proteomics
[7]. We converged on this architecture through experimentation
according to empirical results.

Fig. 3. A visualization of the STAG architecture.

We experimented with various convolutional operators
within our architecture. All operators were implemented using
the PyTorch Geometric. Their median AUCs after one round
of 5-fold cross validation on our pan-peptide dataset are shown
in Table I. Each of these convolutional operators makes use
of both the node and edge features of our constructed TCR-
pMHC graphs. We chose to benchmark two versions of STAG
against the other classifiers considered in this work, one using
each of the two highest performing convolutional operators,
the TransformerConv and the EVT Conv.

B. Datasets

1) Peptide Specific Datasets: Classifiers trained to predict
TCR binding for a specific pMHC complex have been shown
to outperform classifiers trained for pan-peptide prediction
[19]. Here we curate 8 multi-modal peptide specific datasets
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TABLE I
MEDIAN ROC-AUC VALUES FOR THE STAG ARCHITECTURE WITH

DIFFERENT GRAPH CONVOLUTIONAL OPERATORS.

Convolutional Operator AUC
CGConv [52] 0.736
GATConv [53] 0.739
GATv2Conv [54] 0.741
NNConv [50] 0.750
TransformerConv [55] 0.766
EVTConv (ours) 0.791

containing amino acid sequences and protein structures; see
Table II. The modeled structures in each dataset can be used
to train STAG, the 3D-CNN, or other structure-based methods
while the amino acid sequences can be used to train sequence
methods like NetTCR 2.2 and ERGO II. These 8 peptides were
selected because they are well studied and known to bind with
several TCRs [56].

TABLE II
THE 8 PEPTIDE SPECIFIC DATASETS

Peptide MHC Dataset Size
GILGFVFTL A*02:01 2, 281
RAKFKQLL B*08:01 1, 884
ELAGIGILTV A*02:01 1, 339
KLGGALQAK A*03:01 1, 161
NLVPMVATV A*02:01 964
AVFDRKSDAK A*11:01 875
GLCTLVAML A*02:01 509
IVTDFSVIK A*11:01 335

The TCRs in the 8 datasets were sampled from public
databases. Positive TCR-pMHC pairs were curated from the
McPAS [57], VDJ [58], and IEDB [56] databases as well as
from the 10x genomics public datasets [59]. The TCR-pMHCs
taken from the VDJ database were filtered to exclude those
with a confidence score equal to zero. TCR-pMHCs taken
from the 10x genomics datasets were filtered according to
the ITRAP algorithm [60], which has been shown to retain a
diverse and large dataset while effectively removing false pos-
itives from the 10x genomics datasets [60]. No TCR-pMHC
pairs were filtered out from the McPAS or IEDB databases in
this step. Negative TCR-pMHC pairs were sampled from the
10x genomics datasets.

The datasets were then pruned to remove TCRs with similar
CDR3α and CDR3β sequences to prevent data leakage. The
CDR3α and CDR3β amino acid sequences of each data point
were measured in similarity to the others using the kernel
similarity metric proposed in [61]. The datasets were then
pruned so that there were no decoys with kernel similarity
greater than 0.90 and no ground truth samples with kernel
similarity greater than 0.95. These thresholds have been set
in previous work [19]. While there is an abundance of non-
binding TCR-pMHC pairs in the 10x genomics datasets, we
chose to maintain an approximate 4:1 ratio of negative to
positive TCRs in each dataset found in Table II as was done
in previous work [20], [21], [34], [36].

Once we had curated diverse datasets of TCRs for each
of our 8 peptides, the amino acid sequences and predicted
structures of each TCR and TCR-pMHC pair were calculated.

TCRs are described in public databases using their V, D, J, and
CDR3 regions. We used the tool STITCHR [62] to translate V,
D, J, and CDR3 information into full amino acid sequences.
The full amino acid sequences were then passed to the tools
TCRpMHCmodels and immune-scape to model 3D protein
structures. STITCHR is a hidden markov model that calculates
full amino acid sequences for the alpha and beta chains of the
TCR from V, D, J, and CDR3 information with extremely high
fidelity. TCRpMHCmodels and immune-scape are tools that
use homology modeling to produce approximate structures of
TCRs and pMHCs. Note that neither TCRpMHCmodels nor
immune-scape utilize AlphaFold2.

The end result of this curation and processing is 8 multi-
modal peptide specific datasets containing thousands of wet-
lab validated binding and non-binding TCRs. These datasets
include TCR and pMHC amino acid sequences that can be
used to train and test sequence methods such as NetTCR 2.2
and ERGO II, as well as modeled 3D structures that can be
used to train and test structure methods such as STAG, the
3D-CNN, and methods based on inter-protein contacts. Such
datasets are invaluable in comparing sequence and structure-
based methods for TCR-pMHC binding prediction and we
hope that they will be of use to future researchers.

2) Pan-Peptide Dataset: In addition to the 8 peptide spe-
cific datasets curated and considered in this work, we curated
a multi-modal pan-peptide dataset to test each classifier’s
performance on the pan-peptide prediction task. This dataset
contains 18, 260 labeled TCR-pMHC pairs with their full
amino acid sequences and corresponding 3D structural models.
This diverse dataset contains 330 unique peptide-MHC class
I complexes and over 8, 500 unique TCRs.

Positive TCR-pMHC pairs were again curated from the
McPAS, VDJ, IEDB databases and from the 10x genomics
public datasets, with the same filtering techniques described
above being applied to the data. Additionally, we restricted
our analysis to peptides with 8-13 amino acids, as MHC class
I peptides are typically within this range. We also removed
all pMHCs that were not of human origin. Finally, upon
observing that The A*03 and A*11 dextramers in the 10x
datasets appear to have high levels of non-specific binding, we
chose to exclude all positive A*11 and A*03 samples from the
10x datasets.

Negative data points were both sampled from the 10x ge-
nomics dataset and generated through swapping TCRs. When
a TCR is known to bind with a given pMHC, the likelihood of
the TCR binding to the new pMHC is estimated to be about
1 in 20,000 [63], meaning that randomly selecting a TCR and
pairing it with a new pMHC is a valid method for generating a
negative data point. These “swapped negatives” have been used
in dozens of ML papers on TCR-pMHC interaction and are
believed to only have a minor impact on classifier performance
[19]. All datasets mentioned in this study were curated in June
of 2023.

IV. RESULTS

A. Performance Evaluation on Peptide Specific Datasets
To evaluate the merits of our graph-based method for pre-

dicting TCR-pMHC binding specificity from modeled struc-
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Fig. 4. a. Median ROC-AUC values for each of the classifiers on the 8 peptide specific datasets as measured during repeated cross validation. *NetTCR
2.2 was first trained on the pan-peptide dataset, then fine-tuned for each peptide specific dataset. b. Median ROC curve for each of the classifiers on the
pan-peptide dataset as measured during repeated cross validation. c. Median precision-recall curve for each of the classifiers on the pan-peptide dataset as
measured during repeated cross validation.

ture data, we compared STAG to two other models that predict
binding specificity from structure. These are the RACER
protocol for specificity prediction and a 3D-CNN trained on
voxel representations of the proteins. Our results show that
STAG outperforms the other structure-based methods across
all 8 datasets.

To compare our structure-based method to sequence-based
methods, we benchmarked NetTCR 2.2 and ERGO II on all 8
of the peptide-specific datasets. All models were trained and
tested on the same data and benchmarked using repeated 5-fold
cross validation (see Section 1 of the Supplementary Material
for details). The resulting ROC-AUC values for each model
trained on protein structures and protein sequences are shown
in Figure 4a (see Section 4 of the Supplementary Material
for PR-AUC). STAG trans represents the STAG method with
the graph-transformer convolution. STAG evt represents the
STAG method with the novel EVT graph convolution. Figure

4a shows that STAG performs comparably or better than the
sequence-based methods across the 8 peptide specific datasets
in terms of ROC-AUC. Note that AUCs recorded here for the
tools NetTCR 2.2 and ERGO II are slightly better or worse
than those reported in the corresponding initial publications
[20], [21]. This difference in performance reinforces the need
for training TCR-pMHC binding specificity predictors on the
same datasets when benchmarking them against one another,
as was done in this study.

B. Performance Evaluation on Pan-Peptide Dataset

To assess each classifier’s performance for the pan-peptide
prediction task, we performed repeated 5-fold cross validation
for each classifier on our pan-peptide dataset. Figure 4b shows
the ROC-AUC curves for the different classifiers considered
in this study when trained and evaluated using our pan-peptide
dataset. Figure 4c shows the AUPRC values for the classifiers
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when trained and evaluated on the pan-peptide dataset. In
the pan-peptide prediction task, both variations of STAG
significantly outperform the other methods. the statistical
significance of all results were estimated by comparing the
distributions ROC-AUC values that resulted from the repeated
cross validation with those of the other classifiers through
Welch’s T-tests [64]. Further information, including p-values
for the results, can be found in Section 5 of the Supplementary
Material.

V. INTERPRETABILITY

Machine learning models, such as STAG, that make predic-
tions based upon protein structures can provide visual intu-
ition for their predictions. The visual intuition offers greater
interpretability than methods trained on sequence alone. In
this light, STAG facilitates the visualization of which amino
acid contacts were most important to the model when making
a prediction through analysis of the edges of the graph. In
addition, STAG provides information on how model’s predic-
tions are influenced by not just the peptide-TCR contacts but
also the contacts between the MHC and TCR. Methods like
NetTCR 2.2 and ERGO II that do not consider amino acids
in the MHC individually cannot provide such insights.

To provide an example, we use a method for interpreting
the predictions given by STAG that is based on the integrated
gradients algorithm [65] implemented in the captum python
library [66]. Figure 5 shows the normalized values of the
integrated gradients of each amino acid in the TCR-pMHC
complex by color. In Figure 5 we can see that STAG places the
most importance on the amino acids in the peptide that make
contact with the TCR and likewise places greater importance
on the amino acids in the TCR’s CDR loops that come closest
to the peptide. This result agrees with the current consensus
about which residues are expected to play the greatest role
in binding specificity between TCRs and pMHCs [8], [37].
Additional examples of integrated gradient values calculated
by STAG superimposed onto input structures can be found
in Section 7 of the Supplementary Material. A comparison of
the feature attributions given by STAG and the sequence-based
methods is given in Section 8 of the Supplementary Material.

It was recently shown that sequence-based classifiers often
put emphasis on residues in the CDR3-β loop and the peptide
with low proximity in the actual structures that are not likely
to impact binding [10], [67]. This is problematic as it may lead
to incorrect or uninterpretable predictions. The utilization of
a graph neural network to represent the input in STAG allows
us to derive direct insight on where the important residues are
in the structure according to the model.

VI. DISCUSSION

Accurately predicting TCR-pMHC binding specificity is one
of the most significant challenges in modern immunology.
Successfully doing so could revolutionize cancer treatment,
drug design, and vaccine development. Here we have presented
STAG, a novel approach to TCR-pMHC binding specificity
prediction that uses graph neural networks to capture the

Fig. 5. A visualization of the relative importance of amino acids in the
TCR-pMHC to the prediction given by STAG as calculated via the integrated
gradients algorithm. Scores are normalized between zero and one with zero
(green) signifying low importance and one (red) signifying high importance.

geometry of TCR-pMHC complexes when predicting bind-
ing specificity. We have shown that STAG consistently out-
performs other methods for predicting TCR-pMHC binding
specificity from structure data and achieves comparable per-
formance to widely used tools that make predictions from
sequence data. We have also shown that STAG offers poten-
tially high interpretability. The predictions made by STAG are
explainable through the visualization of amino acids that led to
the model making said predictions. This explainability in the
model could directly translate to more interpretable proposal
of candidates for immunotherapy treatments such as peptide
vaccines and adoptive cell therapy.

While many other ML methods have been proposed to
computationally map TCRs to their cognate peptides, properly
comparing them has remained a challenge. The challenge
arises due to the fact that previous work often trained and
tested the classifiers on distinct datasets during benchmarking.
In this work, emphasis was placed on utilizing the same
testing and training sets for all methods compared, giving
a clearer comparison of the tools. In order to make this
comparison, we curated various diverse TCR-pMHC class I
binding datasets that include 3D models of the TCR-pMHC
structures in addition to their amino acid sequences.

In this work, we chose to employ uni-modal models
trained on either 3D protein structure data or amino acid
sequences. We also forewent the use of transfer learning in
order to achieve a better comparison of the effectiveness of the
structure-based models tested. It has been shown for similar
problems, however, that combining 3D structure with sequence
data makes for better classifiers [68]. In future work we will
study the application of multi-modal learning to TCR-pMHC
binding prediction. We anticipate that the comparisons of
different structure-based ML methods given in this work and
the large multi-modal datasets published here will be of great
use in this task.

All datasets used in this article and the code for inference
and explainability methods published therein are available on
GitHub, at https://github.com/KavrakiLab/STAG public.

https://github.com/KavrakiLab/STAG_public
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