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• Identifying which TCRs will bind strongly to which
pHLAs, can serve as a first step in designing personalized
immunotherapy treatments.

• STAG-LLM combines sequence data and 3D structural in-
formation using a protein language model and geometric
deep learning to predict TCR-pHLA binding specificity.

• The incorporation of 3D protein structure data leads to im-
proved TCR-pHLA binding predictions.

• The residue-level attention values produced by our model
correlate with in vitro experimental results.
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Abstract

Background: Strong binding between T cell receptors (TCRs) and peptide–HLA (pHLA) complexes is important for triggering the
adaptive immune response. Binding specificity prediction, identifying which TCRs will bind strongly to which pHLAs, can serve
as a first step in designing personalized immunotherapy treatments. Existing machine learning (ML) methods to predict binding
specificity rely primarily on the amino acid sequences of TCRs and pHLAs to make predictions. However, incorporating the 3D
structure and geometry of the TCR-pHLA complex as an additional data modality alongside protein sequence offers a promising
approach to improving ML methods for predicting TCR-pHLA binding specificity. Modern computational modeling tools present
unprecedented opportunities to incorporate structure data into ML pipelines. We utilize such computational tools to incorporate 3D
data into this work.

Results: We present STAG-LLM, a multimodal ML model for predicting TCR-pHLA binding specificity that leverages sequence
data and computationally generated 3D protein structures. We show that by combining a protein language model with a geometric
deep learning architecture, our method outperforms existing methods even when trained on 3x smaller datasets. To further validate
our model, we conduct in vitro alanine scanning experiments for four peptides and demonstrate a correlation with the attention
weights learned by our model and in vitro results. We also seek to address three key challenges that arise from using computationally
generated 3D structures in ML pipelines: increased inference costs arising from the need to generate 3D structures, limited training
data, and robustness to noise in the generated structures.

Conclusions: STAG-LLM shows tremendous potential for structure-based TCR-pHLA binding prediction methods, offering
a foundation for further advancements in using modeled 3D structures to solve problems in immunology and proteomics. We
anticipate that the usefulness of STAG-LLM and similar tools will increase in coming years as both protein structure prediction
models and large language models continue to advance.
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1. Background

Accurately predicting TCR-pHLA binding specificity could
significantly advance immunotherapy treatments. Cellular im-
munotherapy, now a core pillar of cancer treatment, relies pri-
marily on the ability of T cells to target and destroy cancer cells
as part of the adaptive immune response (1). This process re-
volves around two key proteins/complexes: the T cell receptor
(TCR) and the peptide-human leukocyte antigen (peptide-HLA
or pHLA) complex (2). TCRs are surface proteins that enable
T cells to distinguish malignant cells from healthy ones. HLAs
present a variety of peptides on the surface of cells as pHLA
complexes; TCRs recognize and bind to them. Strong bind-
ing between the TCR and pHLA is important for triggering the
necessary adaptive immune response (2). Binding specificity
prediction, identifying which TCRs will bind strongly to which
pHLAs, can serve as a first step in designing personalized im-
munotherapy treatments such as peptide vaccines, adoptive cell
therapy, or TCR engineering (3).

Numerous machine learning (ML) methods have been pro-
posed to predict TCR-pHLA binding specificity in silico, yet
this remains an open problem (3; 4; 5). The immense diver-
sity of the immune system makes this task particularly difficult.
It is estimated that there are over 1020 possible CD8+ TCRs
(6), which can interact with any of 209 possible peptides (6)
bound to one of the over 28,000 known HLA class I alleles (7).
However, at the time of writing, public databases such as Mc-
PAS (8) and VDJdb (9) contain fewer than 105 unique exam-
ples of TCR-pHLA binding that can be used to train ML mod-
els. This disparity underscores the complexity of the problem.
Adding to the difficulty is the promiscuity of TCR-pHLA inter-
actions; a single TCR can strongly bind to multiple pHLAs, a
phenomenon known as T cell cross-reactivity (10; 11). Existing
ML methods struggle to accurately predict binding specificity
for peptides not represented in their training data, highlighting
the limitations of these models given the small scale of available
datasets relative to the enormous space of possible TCR-pHLA
pairs (4; 5). In addition to further data acquisition, sophisticated
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and generalizable methods are needed to produce more accurate
TCR-pHLA binding predictions.

Incorporating the 3D structure and geometry of the TCR-
pHLA complex as an additional data modality alongside pro-
tein sequence offers a promising approach to improving ML
methods for predicting TCR-pHLA binding specificity. Most
existing computational models focus exclusively on the amino
acid sequences of the TCR, peptide, and HLA without utilizing
structural features (12; 13; 14; 15; 16). However, considering
the geometry and relative orientation of the proteins in TCR-
pHLA complexes can be essential, as they have been shown
to reveal mechanisms of T cell cross-reactivity that sequence-
based analyses fails to capture (17; 18). Historically, the
development of structure-based ML methods for TCR-pHLA
binding specificity prediction has been hindered by a scarcity
of structural data. For example, at the time of writing, the
STCRDab database contains only 702 TCR structures com-
plexed with HLA or HLA-like molecules (19). Advances in
computational protein modeling now present an opportunity to
bridge this gap by enabling accurate in silico predictions of
TCR-pHLA 3D structures. Tools like TCRmodel2 (20) pave the
way for fast structurally informed ML pipelines, which have the
potential to significantly improve TCR-pHLA binding speci-
ficity predictions.

Most existing approaches that incorporate structural informa-
tion to predict TCR-pHLA binding focus on analyzing inter-
protein contacts between the TCR and the pHLA (21; 22; 23;
24). While statistical methods using contact data have shown
encouraging results, the increasing accuracy and reduced noise
of predicted 3D structures open the door for leveraging more
expressive models, such as deep neural networks, with greater
potential for success. In this work we propose a highly ex-
pressive architecture, STAG-LLM, that uses both a large lan-
guage model and a graph convolutional network to predict
TCR-pHLA binding specificity. Our method differs from re-
cent works which have sought to incorporate 3D protein struc-
ture into their predictions but forwent modeling the entire TCR-
pHLA complexes as part of their pipeline, instead choosing to
model only the pHLA (25) or the CDR3β loop of the TCR and
the peptide (26). These works mention the difficulty of model-
ing the CDR loops of the TCR (25) and the large amount of
public data that only discloses the peptide and CDR3β loop
of the TCR (26). Yet, previous works have shown that the
CDR3α loop, the HLA, and other CDR loops of the TCR com-
plex are all important when predicting binding specificity so we
choose to work with full TCR-pHLA complexes in this work
(27; 13; 28; 14).

It has recently been shown that a structure-based deep learn-
ing method leveraging wholly modeled TCR-pHLA structures
tends to outperform sequence-based ML methods for predict-
ing TCR-pHLA binding affinity when trained and tested on the
same datasets (29). Yet, ML approaches in proteomics that rely
on modeled 3D structures, such as STAG (Structural TCR And
pHLA binding specificity prediction Graph neural network),
face three key challenges, which this work addresses. The first
challenge is the increased inference time due to the computa-
tional cost of modeling protein structures. Many state-of-the-art

modeling tools often require significant wall time and special-
ized hardware to generate each structure, making this process
resource-intensive and, by extension, expensive (30). The sec-
ond challenge is the inability of structure-based ML methods
to learn from partial sequence data effectively. This limitation
is potentially significant for TCR-pHLA binding prediction, as
the majority of publicly available data include only partial TCR
sequences, typically restricted to the CDR3 loops. More in-
formation than just the CDR3 amino acid sequences is needed
to produce an accurate 3D model of the TCR-pHLA complex,
so purely structure-based ML methods cannot make use of this
data during training. The third challenge is the potential for
error propagation. Computational protein modeling of TCR-
pHLA complexes is not 100% accurate (30), and inaccuracies
in the structural models can lead to inconsistent performance in
downstream ML tasks. This work introduces a framework to
mitigate these weaknesses of structure-based proteomics ML in
the context of TCR-pHLA binding specificity prediction.

To address the three challenges listed and improve predic-
tion accuracy, this work combines geometric deep learning
with large language models to create a structurally aware TCR-
pHLA binding specificity prediction model. Our method out-
performs existing sequence and structure-based methods in
terms of accuracy (ROC-AUC), even when existing sequence-
based methods are trained on over 3x as much data. Addition-
ally, we show that our model can, for specific cases, replicate
experimental alanine scans in silico. These advancements mark
a significant step forward in the development of robust and ef-
fective TCR-pHLA binding specificity prediction tools.

2. Methods

2.1. Model Architecture
STAG-LLM integrates learned sequence embeddings with

3D protein structures by combining a graph convolutional
neural network (GCNN) and a transformer-based large lan-
guage model (LLM). GCNNs can capture critical structural and
physicochemical relationships within proteins, translating to
outstanding performance across diverse proteomics problems,
including protein-protein docking (31), protein-ligand docking
(32), protein-ligand binding affinity prediction (33), and pro-
tein function prediction (34; 35). GCNNs encode a protein’s
3D structure as a graph, where nodes represent atoms or amino
acids, and edges are often defined according to spatial distances
(36). GCNNs aggregate information across connected nodes
via message-passing convolutions, allowing them to derive lo-
cal and global information about the graph when making pre-
dictions. LLMs trained on protein sequences, known as Pro-
tein Language Models (PLMs), can capture patterns and key
relationships among amino acids. PLMs are typically founda-
tion models trained on vast amounts of unlabeled data, allowing
them to implicitly learn relationships governed by physical and
evolutionary principles (37; 38). Such PLMs can then be fine-
tuned to specific tasks, where they have demonstrated success
in proteomics applications such as protein folding (38), protein-
ligand binding affinity prediction (39), and protein function pre-
diction (34; 35). STAG-LLM builds on previous efforts that
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combined PLMs with GCNNs to achieve superior performance
compared to either PLMs or GCNNs alone (34; 35; 40; 41; 42).

STAG-LLM is a multimodal deep learning model that com-
bines a PLM with a GCNN to predict TCR-pHLA binding
specificity. The model is comprised of three interconnected
components: a PLM, a structure representation branch, and a
sequence representation branch. The model’s architecture is il-
lustrated in Figure 1.

2.1.1. Sequence Representation Branch
The sequence representation branch is depicted in the top

half of Figure 1. A classification token ([CLS ]) is prepended
to the concatenated TCR-pHLA sequence, which is passed
through the protein language model, ESM-2. The embedding
vector corresponding to the ([CLS ]) token is treated as an en-
coding of the entire sequence, as has been done in previous
work (43). This vector is then passed through the MLP to pro-
duce a binary prediction. This branch complements the struc-
tural insights provided by the GCNN module as it considers
only the amino acid sequences of the TCR and peptide-HLA.

Protein Language Model. The PLM utilized in STAG-LLM is
the 8M-parameter edition of ESM-2 (esm2 t6 8M UR50D) (38).
While larger PLMs, such as the 15B-parameter edition of ESM-
2, may outperform this smaller model, such exploration is be-
yond the scope of this work. The ESM-2 model is loaded with
its pre-trained weights using the Hugging Face API (44) and
is first fine-tuned on a masked token prediction task using con-
catenated TCR-pHLA sequences separated by a designated to-
ken ([S EP]). Then, this fine-tuned ESM-2 model is integrated
with the STAG-LLM architecture for binding specificity pre-
diction. The ESM-2 model is further fine-tuned for the task
of TCR-pHLA binding specificity prediction using a protocol
similar to that of LM-GVP (35).

2.1.2. Structure Representation Branch
The structure representation branch is depicted in the bot-

tom half of Figure 1. The structure representation branch en-
codes the 3D structure of a modeled TCR-pHLA complex as a
graph. It uses a GCNN to derive a vector representation of the
3D structure than can be used to predict TCR-pHLA binding
specificity.

Graph Construction. The graph construction encodes the 3D
structure of the complex in a manner similar to previous works
(29; 31), with nodes centered on the carbon-α atoms of each
amino acid and connectivity determined by a radius graph of
10.0Å. Edge features are encoded using a radial basis func-
tion that captures pairwise distances between connected nodes.
The node features are derived from the PLM, as has been done
in prior work (35; 40). ESM-2’s encoding layer generates em-
beddings for each amino acid in the concatenated TCR-pHLA
sequence. These embeddings are used as node features. The re-
sulting graph is a computational representation of the 3D struc-
ture of the TCR-pHLA complex. By nature of its construction,
this representation is invariant to rotation and translation of the
input complex (29).

GCNN Module. Once the input structure has been encoded as
a graph, a GCNN is applied to that graph to predict binding
specificity between the TCR and pHLA. This GCNN consists
of three heterogeneous transformer convolutions with separate
weights learned for different types of edges (e.g. TCR-TCR,
TCR-peptide, peptide-HLA). Residual connections follow each
convolutional layer. A global max pooling operation aggre-
gates the graph into a single vector, representing the complex’s
3D structure. We finalized this architecture after taking in-
spiration from previous works (29; 35; 42). We also exper-
imented with different hyperparameters in earlier versions of
our model. Utilizing a 25% fraction of the total dataset, we
performed 5-fold cross validation for versions of STAG-LLM
model with different hyperparameters and selected the best per-
forming model configuration according to average AUPRC.
The results of these experiments influenced design choices such
as our choice in pooling operator (max pooling), our choice in
graph convolutional operator (transformer convolution), and the
number of convolutional layers in the GCNN (three).

2.1.3. Classification Branch
Once we have obtained a vector from our sequence repre-

sentation branch and a vector from our structure representation
branch, these vectors are averaged to create a single vector rep-
resentation of the TCR-pHLA pair. This vector is then passed
through the multi-layer perceptron (MLP) to obtain a binary
prediction. Using average pooling to combine the sequence and
structure representations of the TCR-pHLA complex, instead of
other possible methods like concatenation, was inspired by pre-
vious work (42) and empirical results.

2.2. Data Curation

The dataset used in this work consist of TCR-pHLA pairings
and binary labels indicating whether the TCR and the pHLA
are a strong or a weak binding pair. Positive samples, or strong
binding TCR-pHLA pairs, were curated from the McPAS (8),
VDJ (9), and IEDB (45) databases as well as from the 10x ge-
nomics public datasets (46). Negative data points were both
sampled from the 10x genomics datasets and generated through
randomly swapping TCRs, as has been done in previous work
(13; 12; 47; 29).

The dataset includes the full amino acid sequences of the
TCR, peptide, and HLA, as well as a computationally mod-
eled 3D structural complex for each TCR-pHLA pair. All TCR-
pHLA pairings in the dataset were derived from single-cell se-
quenceing. TCRs are often described in public databases using
their V, D, J, and CDR3 regions as opposed to their full amino
acid sequences. For such cases, STITCHR (48) was used to
translate V, D, J, and CDR3 information into full amino acid
sequences. TCRmodel2 (20) was then used to model 3D pro-
tein structures from the full sequences. TCRmodel2 produced
five 3D conformations for each input complex. Conformations
with incident angles outside the range [0◦, 45◦] or crossing an-
gles outside the range [5◦, 95◦] were excluded based on estab-
lished analyses of solved TCR-pHLA structures (49). The re-
maining 3D conformation with the highest PLDDT score was
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Figure 1: A visualization of STAG-LLM, a deep learning framework for predicting TCR-pHLA binding specificity. First, the ESM-2 model, our protein language
model, is trained to predict masked tokens on a large unlabeled set of concatenated TCR, peptide, and HLA sequences. Then this pre-trained model is utilized in
STAG-LLM to obtain token-wise embeddings of input sequences. The sequence representation branch (top) utilizes the embedding corresponding to the ([CLS ])
token as the vector representation of the TCR-pHLA sequence. The structure representation branch (bottom) utilizes a reference structure generated by TCRmodel2
to construct a graph representation of the geometry of the TCR-pHLA complex. The node features of this graph are derived from the vector encodings produced
by the ESM-2 model. A GCNN is used to distill the graph representation of the reference structure into a vector representation. The sequence and structure
representations are then fused via average pooling and the TCR-pHLA complex is assigned a binary classification using an MLP.

used in our dataset (50). TCR-pHLA pairs for which no confor-
mation produced acceptable incident and crossing angels were
excluded from the final dataset. In total, the primary dataset
contains 7,412 positive examples and 38,797 negative exam-
ples. A positive example is a TCR-pHLA pair that have been
experimentally shown to bind to each other. A negative exam-
ple is a TCR-pHLA pair that have been experimentally shown
not to bind, or a TCR randomly paired with a pHLA for which
binding is unlikely (47).

During each cross-validation procedure, the dataset was ran-
domly partitioned into 3 mutually exclusive and collectively
exhaustive groups: training (60%), validation (20%), and test-
ing (20%). To prevent data leakage, it was ensured that the
Levenstein similarity ratio between the CDR3β sequences of
two TCRs paired with the same peptide in different partitions
did not exceed 0.9 (Figure 2D). Like with other TCR-pHLA
datasets, the dataset we use in this paper is extremely long tailed
(see Figure 2B) (51; 52). Although there are over 370 unique
peptides in our dataset, the 10 most common peptides account
for 82% of the entries. Likewise, some HLA alleles are more
common in our dataset than others. HLA-A makes up 80.8%
of the dataset, HLA-B makes up 18.9% of the dataset, HLA-C
makes just up 0.2% of the dataset and HLA-E makes up the fi-
nal 0.1% of the dataset. While it is infeasible to eliminate all
sources of bias, taking repeated measurements on different par-
titions of the dataset and using the same partitions to benchmark
each model helps to mitigate biases.

2.3. Alanine Scan Protocols

Alanine scanning identified peptide residues that are criti-
cal in for T cell activation. Alanine-substituted immunogenic
peptides (purity > 85%) were obtained from GeneScript USA,
Inc. Target tumor cells were peptide-pulsed for 4 hours, co-
cultured with TCR-T cells at a 5:1 ratio, and analyzed by either
ELISPOT methods or MIP-1β ELISA methods.

ELISPOT protocol. TCR-T cell reactivity was assessed us-
ing IFN-γ Enzyme-link Immunospot (ELISPOT) (53). Plates
were coated with anti-human IFN-γ capture antibody, washed,
blocked and washed. TCR-T cells were co-cultured at a
5:1 ratio with mapped alanine peptide pulsed target tumor
cells for 15-18 hours. Then, IFN-γ monoclonal antibody
(Mabtech, 3420-6-1000) was added to the plate and incubated
for 1 hr. ExtrAvidine-Alkaline Phosphatase solution (Sigma-
Aldrich, E2636) was added and incubated for 1.5 hrs. Spots
were observed by adding BCIP/NBT Membrane Alkaline Phos-
phatase Substrate (Sigma, 11697471001) solution. ELISPOT
plates were scanned and counted using ImmunoSpot ELISPOT
analyzer (Cellular Technology Ltd).

MIP-1β ELISA protocol. MIP-1β secretion was mea-
sured using the Human MIP-1β ELISA Kit (Invitrogen ,
BMS2030INST). TCR-T cells and peptide-pulsed tumor cells
were co-cultured at a 2:1 ratio for 16-18 hrs. Supernatant
was collect and added to provided ELISA plates, according to
manufacturer instructions, and read on a Synergy microplate
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Figure 2: A: HLA Composition of Our Dataset - The pie chart shows the percentage makeup of the HLAs in our dataset. HLAs that make up at least 1% of
the dataset are listed by name. B: Peptide Composition of Our Dataset -The pie chart shows the percentage makeup of the peptides in our dataset. The 10 most
common peptides are listed by name. C: Levenshtein Similarity Between Train/Test Sequences – For each data partition, we measured how similar TCRs in our
test sets were to TCRs in our training/validation datasets. KDE plots show the Levenstein Similarity Ratio for the CDR3β regions of TCRs matched to the same
peptide (such that one of these TCRs appears in our training/validation data and one appears in our testing data). Binders are plotted in green while decoys are
plotted in red. Note that a large portion of TCRs in the testing sets were paired with peptides that did not occur in the training dataset. These TCRs are excluded
from this visualization. More information on the data curation process can be found in Section 2.2

reader (BioTek). MIP-1β concentrations were calculated
according to the standard curve.

3. Results

3.1. STAG-LLM Outperforms Existing TCR-pHLA Binding
Specificity Prediction Models

The six models considered in this work are as follows:

• STAG-LLM: Trained on 3D structure plus full TCR, pep-
tide, and HLA sequences

• STAG: Trained exclusively on 3D structures (29)

• NetTCR 2.2: Trained on amino acid sequences from all
six CDR loops (14)

• TCR-ESM: Trained on CDR3α and CDR3β sequences
(12)

• ERGO II AE: Trained on CDR3α and CDR3β sequences
(13)

• ERGO II LSTM: Trained on CDR3α and CDR3β se-
quences (13)

All methods evaluated in this section were benchmarked
on the same dataset using the same repeated cross-validation
framework. The dataset used for the analysis in Figure 3A. was
the dataset described in Section 2.2 consisting of 46,209 TCR-
pHLA pairs, each with full amino acid sequences and modeled
3D structures. Benchmarking all methods on the same dataset
is critical, as the performance of TCR-pHLA binding specificity
predictors has been shown to vary widely between datasets (4).
Each model was trained, validated, and tested using 15 different
Train-Validation-Test partitions of the primary dataset, result-
ing in 15 distinct ROC-AUC measurements. The training and
validation procedures for each model were as suggested in their
initial publications.

The results of the repeated cross-validation on the primary
dataset are shown in Figure 3A. The colored bars correspond
to the median ROC-AUC score recorded for each classifier
during cross-validation. Swarm plots show the 15 individual
ROC-AUC scores measured for each classifier. The median
ROC-AUC scores for each of the six classifiers were: STAG-
LLM (0.815), STAG (0.800), NetTCR 2.2 (0.790), TCR-ESM
(0.754), ERGO II AE (0.711), ERGO II LSTM (0.691). These
results indicate that the methods STAG and STAG-LLM, which
leverage the predicted 3D structure of the TCR-pHLA com-
plexes, significantly outperformed the sequence-based meth-
ods: NetTCR 2.2 (14), TCR-ESM (12), and ERGO II (13).
Additionally, the combination of the LLM and the structure-
based graph neural network, STAG-LLM, outperformed the
graph neural network model, STAG. We used the Welch’s T-
test to estimate the statistical significance of the difference in
performance for all methods (54). All p-values were below
0.05 and are shown in Table A.4. These results suggest that
incorporating structural information enhances the accuracy of
TCR-pHLA binding specificity predictions.

3.2. Evaluating the Impact of Training Data Quantity and
Composition on Classifier Performance

A limitation of structure-based methods like STAG, is that
they cannot be trained on partial protein sequences because the
full protein sequence is needed to produce a 3D model. Since
most publicly available data on TCR-pHLA binding provides
only partial TCR sequences, often just the CDR3 loops, as-
sessing how the inclusion or exclusion of additional training
data impacts classifier performance is important. To address
this, we conducted an experiment comparing the performance
of structure-based and sequence-based models as the size and
composition of the training dataset is varied. The results are
shown in Figure 3B.

For the experiments shown in Figure 3B, the testing and val-
idation datasets were the same ones sampled from the dataset
corresponding to the pan-peptide prediction results shown in
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Figure 3: A: ROC-AUC Scores on Primary Dataset – Six classifiers (x-axis) were trained and tested on identical partitions of the primary dataset using repeated
cross-fold validation. Colored bars show the median ROC-AUC scores (y-axis); swarm plots show the 15 individual scores measured for each classifier. The
median ROC-AUC scores were: STAG-LLM (0.815), STAG (0.800), NetTCR 2.2 (0.790), TCR-ESM (0.754), ERGO II AE (0.711), ERGO II LSTM (0.691).
Dataset construction is described in Section 2.2. The results in Figure 3A are discussed in Section 3.1. B: Classifier Performance vs. Training Data Size – Five
bar clusters (x-axis) represent different training dataset sizes; each cluster includes six bars (one per classifier) showing median ROC-AUC from repeated cross
validation. Testing/validation sets were fixed while training data sizes and composition were varied as noted below each cluster. Hatched bars (STAG-LLM and
STAG in cluster 5) indicate that the models could not properly train on the extra 78,989 sequence-only samples. The results in Figure 3B are discussed in Section
3.2. C: Classifier Robustness to Noise – ∆ ROC-AUC (y-axis) shown for three dropout rates (x-axis), at which edges were randomly dropped from the graph neural
network during inference. A less negative ∆ (less negative change in performance) is better. The results in Figure 3C are discussed in Section 3.3. D: LLM Size
vs Model Performance - We experimented with 4 versions of STAG-LLM, each using a different ESM-2 model (eg. with 8M, 35M, 150M, or 650M parameter
models). The median ROC-AUC scores were: STAG-LLM 8M (0.815), STAG-LLM 35M (0.817), STAG-LLM 150M (0.817), STAG-LLM 650M (0.817). While
the larger LLMs performed slightly better, we did not observe any statistically significant differences between the models. The results in Figure 3D are discussed in
Section 3.4.

Figure 3A. The training dataset was varied according to Table 1.
We conducted experiments down-sampling the training dataset
to 25% (resulting in just 6,967 training data points), down-
sampling the training dataset to 50% (resulting in 13,934 train-
ing data points), down-sampling the training dataset to 75% (re-
sulting in just 20,868 training data points). We also conducted
an experiment where we augmented the training dataset with an
additional 78,989 sequence-only data points, resulting in over
100,000 training data points for the sequence-only models to

learn from.

Train Dataset Total Training Size Sequences with Structures Sequences without Structures
Subsampled 25% 6,967 6,967 0
Subsampled 50% 13,934 13,934 0
Subsampled 75% 20,901 20,901 0
Whole dataset 27,868 27,868 0
Expanded dataset 106,857 27,868 78,989

Table 1: Summary of dataset sizes and the availability of modeled 3D struc-
tures.
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The results in Figure 3B show that even when the sequence-
only methods were trained on datasets more than double or even
triple the size of those used by structure-based methods, their
performance still lagged behind that of STAG and STAG-LLM.
For all methods studied here, increasing the size of the train-
ing dataset while keeping the data modalities consistent im-
proved performance. However, incorporating many data points
with sequence-only data into the training of STAG-LLM actu-
ally diminished its performance, even though reference struc-
tures were present in the testing and validation datasets. We
attribute this behavior to the network ignoring the modality that
is severely missing during training, diminishing the contribu-
tion of the structure-based branch. This phenomenon has been
seen in other multimodal learning problems (55; 56). The per-
formance of STAG, which cannot utilize sequence-only data,
remained unchanged with the inclusion of additional sequence
data.

3.3. STAG-LLM Shows Greater Resilience to Errors in the Ref-
erence Structure Compared to STAG

A major challenge of using modeled 3D structures as inputs
to a machine learning pipeline for predicting TCR-pHLA bind-
ing specificity that STAG-LLM addresses is the potential for
inaccuracies in the 3D models to propagate errors into the fi-
nal predictions (29; 30). Here, we demonstrate that the STAG-
LLM architecture mitigates this error propagation, showing
greater resilience to inaccuracies in input structures compared
to STAG. Due to the graph construction process used in both
STAG and STAG-LLM, inaccuracies in the input structures af-
fect only the edges of the graph, not the composition of the
nodes (29). Therefore, to assess resilience, we conducted exper-
iments where edges in the input graph were randomly dropped,
simulating small errors in the reference structure. The re-
sults, shown in Figure 3C, indicate that STAG-LLM maintains
a much higher performance under these conditions than STAG,
highlighting its robustness to errors in the initial reference 3D
model of the TCR-pHLA complex.

3.4. Model Performance with Different Training and Evalua-
tion Configurations

To evaluate the contribution of each component of the STAG-
LLM architecture to its overall performance, we conducted an
ablation study. This study investigated the impact of fine-tuning
the PLM and its embeddings, as well as the independent contri-
butions of the sequence and structure representation branches.
The results are summarized in Table 2. These results indicate
that the full STAG-LLM model, incorporating all three compo-
nents, achieves optimal performance.

Utilizing the ESM-2 model “out-of-the-box” produced good
results for the structure-only portion of our architecture, as
shown under config 2 of Table 2. The ROC-AUC values pro-
duced when fixing the PLM embeddings and training only
the GCNN were roughly equivalent to the ROC-AUC values
produced by the original STAG model, which uses a GCNN
with physiochemical properties as node features. This suggests
that amino acid-wise embeddings produced by ESM-2 are as

Variable Training & Evaluation Configuration
config 1 config 2 config 3 config 4 config 5

Fine-tuned LLM ✓ X ✓ ✓ X
Ref. struct. in train. ✓ ✓ ✓ X X
Ref. struct. in eval. ✓ ✓ X X X
Median ROC-AUC 0.815 0.802 0.797 0.803 0.737
variance 3.23E-5 1.09E-5 8.36E-3 1.35E-4 9.66E-5
p-value with config 1 N.A 1.55E-3 7.40E-3 1.63E-3 5.39E-14

Table 2: Performance Of The STAG-LLM Model With Different Train-
ing And Evaluation Settings (Ablation Study) “Fine-tuned LLM” specifies
whether the protein language model (PLM) was fine-tuned for the binding
specificity task or used without additional tuning. “Ref. struct. in train.” indi-
cates whether reference structures were included during training, enabling the
graph-based branch of the model to be trained. ”Ref. struct. in eval.” indi-
cates whether reference structures were included during evaluation, allowing
the graph-based branch of the model to contribute to predictions. Five dis-
tinct combinations of these three variables were evaluated, giving five different
training/testing configurations. The five configurations represent all meaning-
ful configurations; for example, testing using structure without first training the
GCNN portion of the model would not make sense.

roughly effective as physiochemical properties for node embed-
dings in a GCNN trained to predict TCR-pHLA binding speci-
ficity.

Fine-tuning the PLM is essential to achieving adequate per-
formance from the sequence representation branch of the archi-
tecture. Without this fine-tuning, the sequence-only branch per-
formed poorly. One explanation is that the ([CLS ]) token was
not trained to represent anything in the original ESM-2. How-
ever, other works have gotten around this by averaging the em-
beddings from the last layer before performing sequence classi-
fication, (12). This method provided no statistically significant
improvement here. Notably, using just the Sequence Represen-
tation Branch without first finetuning the PLM underperformed
compared to TCR-ESM (12), a model that uses ESM-1v to gen-
erate individual embeddings for the CDR3a, CDR3b, and pep-
tide sequences, which are concatenated and classified with an
MLP. This result suggests that without fine-tuning, concate-
nating sequence-specific embeddings from the PLM is more
effective than producing a single representation for the entire
concatenated sequence. This observation could be due to the
fact that ESM-2 was originally trained on homodimers rather
than protein complexes. Finally, while fine-tuning the PLM
improves performance, increasing the size of the PLM does
not have a significant impact on the performance of the overall
model (see Figure 3 D.). This could be due to dataset limita-
tions.

The sequence representation branch exhibited significant
variability when trained exclusively on data with reference
structures. This indicates that our architecture does not ensure
proper training of the sequence-only portion of the model if all
examples seen during training have reference structures. While
the median ROC-AUC for the fully trained model without ref-
erence structures during evaluation was a respectable 0.797, re-
sults ranged widely, with a minimum ROC-AUC of 0.729. This
variability was addressed in the final version of our model by
periodically incorporating some training examples without ref-
erence structures. For such examples only the Sequence Repre-
sentation Branch was updated during backpropagation. This re-
sulted in more consistent performance from the Sequence Rep-
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resentation Branch.
Enabling accurate predictions from the sequence-only branch

is a major advantage of STAG-LLM over purely structural
ML methods like the original STAG. One major limitation of
structure-only methods is the computational cost of generating
3D structures for each TCR-pHLA pair. STAG-LLM mitigates
this limitation by allowing for initial predictions using only the
PLM and sequence branch. TCR-pHLA pairs of interest can be
triaged according to the sequence-only predictions before 3D
models are selectively generated. Then, final predictions can be
made on the 3D models using the complete STAG-LLM archi-
tecture.

3.5. Correlation Between Attention Values from STAG-LLM’s
Structure Representation Branch and in Vitro Alanine
Scans

Alanine scanning of peptides in the TCR-peptide-HLA com-
plex provides valuable insights into which residues are most
critical for eliciting immune responses and helps assess the risk
of T cell cross-reactivity (57). It has been shown in other do-
mains that attention coefficients extracted from trained GCNNs
“can reveal hidden node relations and quantify the importance
of nodes” (58). Upon investigation, we discovered that in sev-
eral cases, attention values generated by the GCNN component
of the STAG-LLM architecture can be used to identify residues
that contribute significantly to TCR-pHLA binding. To further
benchmark STAG-LLM and assess the utility of these attention
values, we conducted four in vitro alanine scanning experiments
and compared the results to our model’s predictions. We ob-
served favorable results for three out of the four alanine scans,
shown in Figure 4. Importantly, none of the native peptides,
mutated peptides, or the corresponding TCRs appeared in the
model’s training dataset.

3.5.1. Spearman Correlation with Attention Values
For the three alanine scans shown in Figure 4, an inverse

correlation was observed between the importance assigned to
peptide residues by STAG-LLM’s attention mechanism and the
change in T cell activation, measured as cytokine production,
when those residues were substituted with alanine.

• For the peptide KITDFGRAK, the Spearman correla-
tion between the attention values and interferon-gamma
(IFN − γ) production measured via ELISpot assays was
-0.999 (p-value: 1.4 × 10−24).

• For the peptide YLVPIQFPV, the Spearman correlation
with macrophage inflammatory protein-1 beta (MIP− 1β)
production measured via ELISA was -0.427 (p-value:
0.251).

• For the peptide IYTWIEDHF, the correlation with MIP −
1β production was -0.783 (p-value: 0.066).

Aggregating the results across all three peptides that STAG-
LLM correctly classified as binding to their TCRs, the over-
all Spearman correlation between the attention values given by
STAG and our alanine scan data was -0.493 (p-value: 0.0169),

demonstrating that STAG-LLM correctly focuses on residues
within the peptide that are most influential in TCR binding.

3.5.2. Insights from Model Attention Weights and Structural
Analysis

STAG-LLM consistently assigned high attention values to
residues in the middle of peptides that exhibit prominent struc-
tural features, such as aromatic rings. 3D models generated
by TCRmodel2 suggest that these prominent features may ex-
tend toward the TCR when the peptides are in complex with
HLAs. It has been shown that the loss of structurally promi-
nent features in the peptide can cause changes in TCR speci-
ficity (59; 57). This appears to be the case for the three peptides
shown in Figure 4.

• KITDFGRAK peptide: STAG-LLM assigns high attention
to the phenylalanine at position 5 and the arginine at po-
sition 7, which feature prominent side chains that may
extend toward the TCR. The alanine scan, Figure 4 (left
panel), indicates that the loss of either of these side chains
will cause the TCR to no longer react against the peptide,
highlighting their importance. Irrespective of the model’s
attention values, the amino acids at positions 1, 2, and 9
were revealed by the alanine scan to be very important to
T cell activation. This could be because these residues oc-
cur at or close to the canonical anchor positions for HLA-
A*03:01 and affect peptide binding to the HLA, indirectly
reducing the potential for T cell activation.

• YLVPIQFPV peptide: For this peptide, Figure 4 (center
panel), the model assigned high attention to the pheny-
lalanine at position 7, which our alanine scan results show
plays a critical role in eliciting an immune response. Our
alanine scan data also indicates that the glutamine at posi-
tion 6 is important for TCR recognition. However, despite
its prominent side chain, STAG-LLM assigned low atten-
tion to the glutamine at position 6. This may be because
the side chain is buried in the HLA cleft in the 3D struc-
ture, limiting its relevance to TCR interaction. Contrary to
the attention value assigned by the model, the amino acid
at position 8 was shown by the alanine scan to be impor-
tant to T cell activation. This could be because this residue
is close to the canonical anchor position for HLA-A*02:01
and affects peptide binding to the HLA, indirectly reduc-
ing the potential for T cell activation.

• IYTWIEDHF peptide: As shown in Figure 4 (right panel),
high attention was given to the tryptophan at position 4,
with its aromatic rings, and to the glutamic acid at posi-
tion 6, a negatively charged residue. Both residues were
confirmed by the alanine scan to play key roles in TCR
recognition. The histidine at position 8, however, received
low attention from STAG-LLM, despite its prominent side
chain. This result agrees with the alanine scan, which
showed that a loss of this side chain does not result in a
significant change in TCR specificity.
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Figure 4: Comparison Of Model Attention Weights And Alanine Scans Each panel depicts an alanine scan for a distinct peptide-TCR pair. The peptides are,
from left to right: KITDFGRAK, YLVPIQFPV, IYTWIEDHF. The bar charts in each panel show the average measurement of cytokines for the reference peptide
(REF) and the mutated peptides across wet lab experiments. All measurements are normalized to the REF peptide for each scan. For the KITDFGRAK the panel on
the left, IFN − γ production was measured via ELISpot assays. In the center and right panels, MIP− 1β production is measured via ELISA. Underneath each of the
bar plots is a 3D model of the peptide colored according to the attention weights from TCR nodes to that peptide node in STAG-LLM’s GCNN module. Residues
in the peptide whose node had no edges connecting it to the TCR are colored in white and attention values for those nodes are treated as undefined in this analysis.
These colors are determined by our computational analysis of the peptides using STAG-LLM and are presented in this figure to be juxtaposed with the experimental
results shown in the bar charts.

3.5.3. Misclassification and Observed Limitations

While STAG-LLM correctly predicted binding for the native
peptides KITDFGRAK, YLVPIQFPV, and IYTWIEDHF and
their corresponding TCRs, even though these peptides were
not featured in our training dataset, it failed to classify the
VVGACGVGK peptide and its corresponding TCR as a bind-
ing pair. Additionally, the attention values for the residues in
the VVGACGVGK peptide showed no correlation with the in
vitro alanine scan that was conducted for this peptide. Unlike
the correctly classified peptides, VVGACGVGK lacks residues
with prominent structural features, which may have contributed
to the misclassification.

Despite the strong correlation between STAG-LLM’s atten-
tion values and alanine scan data, the model’s binding speci-
ficity predictions (binary outputs) varied considerably for the
mutated peptides. While STAG-LLM correctly predicted strong
binding for the native peptides shown in Figure 4, it made in-
correct predictions for several mutated peptides, resulting in a
lackluster Spearman correlation of 0.227 (p-value: 0.265) be-
tween changes in model predictions and in vitro alanine scan
results. These discrepancies highlight the current limitations
of datasets and the challenges of making predictions for un-
seen peptides and TCRs. While the attention mechanism in
STAG-LLM can successfully identify the key residues in TCR-
pHLA binding, further research is needed to improve the ac-
curacy of binding specificity prediction methods for novel or
mutated peptide-TCR pairs.

3.6. Model Performance on Unseen Peptides Varies

Model
Peptide GILGFVFTL ELAGIGILTV FLCMKALLL LLWNGPMAV AVFDRKSDAK KLGGALQAK IVTDFSVIK NLVPMVATV RAKFKQLL GLCTLVAML

STAG-LLM 0.799 0.764 0.628 0.617 0.584 0.538 0.557 0.507 0.412 0.355
STAG 0.845 0.815 0.644 0.585 0.600 0.567 0.523 0.532 0.444 0.396

NetTCR 2.2 0.534 0.808 0.662 0.422 0.559 0.554 0.460 0.440 0.371 0.338
TCR-ESM 0.587 0.605 0.452 0.398 0.522 0.506 0.390 0.450 0.319 0.397

ERGO II AE 0.620 0.553 0.515 0.525 0.517 0.515 0.422 0.495 0.385 0.427
ERGO II LSTM 0.603 0.562 0.522 0.511 0.503 0.488 0.438 0.510 0.406 0.463

Table 3: Performance of each ML model on the unseen peptide prediction task
for each of the 10 peptides tested. The top performing score is boded for each
peptide. ROC-AUC scores that were worse than random guessing (0.5) are
highlighted in red.

To evaluate how the models perform on unseen peptides, we
conducted an experiment for each of the 10 most common pep-
tides in our dataset. For each of the 10 peptides, we first con-
structed a dedicated test set containing all instances of that pep-
tide. The remaining data, which did not include any instances
of the held-out peptide, was then randomly partitioned into five
distinct 80% training and 20% validation pairs. Using these five
partitions, we retrained each model five times and measured its
performance on the corresponding held-out test set. The me-
dian ROC-AUC value for each model on each unseen peptide
test set is reported in Table 3.

The models tested demonstrated significant variability in
their performance when predicting TCR binding for the un-
seen peptides. Notably, the structure-based methods, STAG
and STAG-LLM, displayed slightly better performance than the
sequence-based methods for most unseen peptides. Accuracy
on some peptides was high, with models achieving ROC-AUCs
greater than 0.8 despite those peptides not being included in the
training or validation data. The performance on the majority of
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unseen peptides, however, was poor across all models, some-
times even worse than random guessing. These findings are
consistent with previously reported challenges in generalizing
to unseen peptide-MHC-TCR data (4; 5; 60). While 5 of the
10 peptides considered here have TCR-pHLA crystal structures
associated with them in the PDB (GILGFVFTL ELAGIGILTV
NLVPMVATV RAKFKQLL GLCTLVAML) and the LLWNGP-
MAV peptide has a pHLA crystal structure in the PDB, there is
no apparant advantage for the structure based methods on pre-
dicting binding for these peptides when they are held out of the
training and validation sets, as both structure models performed
worse than random on 2 of the 5.

4. Discussion

In this study, we approach TCR-pHLA binding specificity
prediction as a supervised machine learning task as opposed to
an unsupervised task. Unsupervised methods in this domain
range from clustering techniques (61) to the use of uncertainty
quantification metrics derived from general protein structure
prediction tools such as AlphaFold (62; 63). Regarding binding
prediction for novel or unseen peptides, supervised ML mod-
els typically exhibit lackluster performance (4; 29), likely due
to the limited amount of available training data relative to the
space of all possible TCR-pHLA pairings (6). Unsupervised
methods tend to show more consistent performance on unseen
peptides (64), yet they still fall short in terms of overall predic-
tive accuracy (65). Additionally, the performance of unsuper-
vised predictors still varies across peptides (64) and typically
requires some amount of labeled data for calibration. Given
the limitations inherent in both supervised and unsupervised ap-
proaches, we advocate for the continued development of super-
vised models, such as STAG-LLM. These models can be used
both as standalone tools and in combination with unsupervised
techniques to improve prediction accuracy in clinically relevant
scenarios.

With the distinction between supervised and unsupervised
classifiers in mind, we only compared STAG-LLM to other su-
pervised classifiers in this work. To ensure fairness in these
comparisons, all models were retrained, validated, and tested
using the same datasets. When constructing the train, valida-
tion, test splits for the repeated cross fold validation, we did
not explicitly enforce peptide-strict partitioning. Nonetheless,
up to 41.5% of the TCR-pHLA pairings in the test sets con-
tained peptides that did not appear at all in the training or val-
idation sets. As a result, each model’s performance on un-
seen peptides is partially reflected in the reported ROC-AUC
scores from our repeated cross-validation experiments (see Fig-
ure 3A). However, performance on these unseen peptides var-
ied wildly, both per-peptide and across training splits, making
it difficult to draw firm conclusions regarding generalizability
to novel peptides. For this reason, we focus our empirical anal-
ysis on the 15x repeated cross-validation results on our large
dataset of over 46,200 TCR-pHLA pairs. All classifier compar-
isons in this setting yielded statistically significant differences
(p − values < 0.05) (see Table A.4), providing strong support
for the effectiveness of STAG-LLM in the supervised setting.

Finally, we posit that as larger datasets become available, su-
pervised methods, such as deep learning, have the potential
to outperform unsupervised approaches in TCR-pHLA binding
prediction, mirroring the trajectory observed in protein folding
and contact prediction, where deep learning surpassed statisti-
cal techniques as data became more ubiquitous and methodolo-
gies more sophisticated (66; 67; 68; 50).

5. Conclusion

Predicting TCR-pHLA binding specificity remains a signif-
icant challenge. In this work we introduced STAG-LLM, a
multimodal deep learning model that leverages both sequence
and 3D structure data to outperform existing methods. We
addressed three critical limitations of structure-based mod-
els: high inference costs, limited training data, and sensitiv-
ity to errors in reference 3D structures. STAG-LLM allows
users to partially circumvent the cost of generating 3D mod-
els, as TCR-pHLA pairs of interest can first be triaged us-
ing just the sequence representation branch. We demonstrated
that STAG-LLM outperforms existing sequence-based meth-
ods, even when those methods are trained on over three times
more data. We also showed that STAG-LLM is more resilient
to errors in the initial 3D model than previous structure-based
deep learning methods for TCR-pHLA binding specificity pre-
diction. As part of this work, we conducted alanine scans and
compared the results to predictions made by STAG-LLM and
the attention weights assigned by the model to individual amino
acids during inference. We observed a correlation between at-
tention weights observed in the STAG-LLM model and the out-
come of in vitro alanine scans.

The results of our experiments reinforce the importance of
incorporating 3D structure data in predicting TCR-pHLA bind-
ing specificity. Structural information improves the accuracy of
binding predictions by capturing the spatial and physicochem-
ical features of TCR-pHLA interactions that sequence alone
cannot fully convey. As more wet lab data becomes avail-
able for training, and computational tools for modeling TCR-
pHLA structures continue to become more precise, we expect
structure-based ML models to further improve in performance
and generalizability. The developments presented in this work
pave the way for further advancements in using modeled 3D
structures to solve problems in immunology and proteomics.

As future work, we anticipate that advancements in in mod-
eling protein flexibility, especially within the highly dynamic
CDR loops of the TCR, will be essential for refining predic-
tions. Capturing conformationally diverse binding modes be-
tween the TCR and pHLA through molecular dynamics simu-
lations or other computational methods could even shed light
on the underlying physiochemical mechanisms for T cell acti-
vation in addition to improving the accuracy of in-silico binding
predictions.

6. List of abbreviations

• TCR: T-cell receptor
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• MHC: Major Histocompatability Complex

• pMHC: peptide-MHC

• HLA: Human Lucocyte Antigen

• pHLA: peptide-HLA

• ELISA: ELISA Enzyme-Linked Immunosorbent Assay

• ELISpot: Enzyme-Linked ImmunoSpot

• ML: Machine Learning

• LLM: Large Language Model

• PLM: Protein Language Model

• ESM: Evolutionary Scale Modeling

• GNN: Graph Neural Network

• CNN: Convolutional Neural Network

• GCNN: Graph Convolutional Neural Network

• MLP: Multi-Layer Perceptron

• ROC: Receiver Operating Characteristic

• ROC-AUC: Area Under the ROC Curve

• AUPRC: Area Under Precision-Recall Curve

• KDE: kernel density estimate

• 3D: three dimensional

• STAG: Structural TCR And pMHC binding specificity
prediction Graph neural network
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Appendix A. Statistical Significance of Results

To assess the statistical significance of the results in section
3.1, Welch’s t-test for independence was applied to the dis-
tributions of ROC-AUC values obtained from repeated cross-
validation (15 values per model). This analysis was conducted
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for each of the six machine learning models tested on the pri-
mary dataset. All p-values were below 0.05.

STAG-LLM STAG NetTCR 2.2 TCR-ESM ERGO II AE ERGO II LSTM
STAG-LLM 5.86E-08 1.29E-09 4.54E-20 1.58E-26 1.35E-21

STAG 5.86E-08 2.63E-02 1.20E-15 7.70E-24 8.17E-20
NetTCR 2.2 1.29E-09 2.63E-02 9.48E-13 9.03E-22 9.12E-19
TCR-ESM 4.54E-20 1.20E-15 9.48E-13 1.07E-15 2.07E-14

ERGO II AE 1.58E-26 7.70E-24 9.03E-22 1.07E-15 2.59E-05
ERGO II LSTM 1.35E-21 8.17E-20 9.12E-19 2.07E-14 2.59E-05

Table A.4: p-values from Welch’s t-test for independence Welch’s t-test for
independence was performed on the distributions of ROC-AUC values mea-
sured during repeated cross validation for each ML model tested on the primary
dataset, 6 models and 15 measurements per model.

To assess the statistical significance of the results in section
3.4, Welch’s t-test for independence was applied to the dis-
tributions of ROC-AUC values obtained from repeated cross-
validation (15 values per model). This analysis was conducted
for four different versions of STAG-LLM, each with a different
sized version of ESM2. None of the observed differences were
statistically significant.

STAG-LLM 8M STAG-LLM 35M STAG-LLM 150M STAG-LLM 650M
STAG-LLM 8M 0.505 0.234 0.620

STAG-LLM 35M 0.505 0.619 0.888
STAG-LLM 150M 0.234 0.619 0.536
STAG-LLM 650M 0.620 0.888 0.536

Table A.5: p-values from Welch’s t-test for independence Welch’s t-test for
independence was performed on the distributions of ROC-AUC values mea-
sured during repeated cross validation for each version of STAG-LLM tested
on the primary dataset, 4 model sizes and 15 measurements per model.

Appendix B. Attention Values and Alanine Scan Data

The table shows the results for the 4 alanine scans presented
in this paper. ”amino acid” refers to the amino acids in each
peptide. “INFγ” refers to the ELISPOT counts as described in
section 2.3. ”MIP-1β” refers to the measured MIP-1β secretion
as described in section 2.3. “INFγ ratio” and “MIP-1β ratio”
refer to the measured ratio of the cytokines measured for the
alanine scan peptides vs the reference peptide. “untrained LLM
attention” refers to the average attention values returned by the
ESM-2 model out of the box. “fine tuned LLM attention” refers
to the average attention values returned by the ESM-2 model
after it was fine tuned as part of the STAG-LLM architecture.
“GCNN TCR attention” refers to the attention weights from
TCR nodes to that peptide-amino-acid node in STAG-LLM’s
GCNN module. The TCRs that were paired with the pHLAs in
our experiments are identified by their CDR3β regions and are
given in the following table.

Appendix C. TCR Identifiers

Here we provide identifiers for the four TCRs used in the
alanine scan experiments.

References

[1] M. Y. Want, Z. Bashir, R. A. Najar, T Cell Based Immunotherapy for
Cancer: Approaches and Strategies, Vaccines 11 (4) (2023) 835.

amino acid K I T D F G R A K
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MIP-1β ratio N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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fine tuned LLM attention 2.39e-03 2.22e-03 2.38e-03 2.22e-03 2.12e-03 2.05e-03 2.44e-03 2.22e-03 2.41e-03
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∆ STAG-LLM pred 0.452 -0.825 0.0715 -0.883 -0.582 -0.202 -0.872 -0.596 -0.0567

untrained LLM attention 2.37e-03 2.23e-03 2.26e-03 2.19e-03 2.22e-03 2.03e-03 2.24e-03 2.10e-03 2.00e-03
fine tuned LLM attention 2.17e-03 2.22e-03 2.12e-03 2.45e-03 2.36e-03 2.17e-03 2.18e-03 2.31e-03 1.92e-03

GCNN TCR attention 0.015 0.01 0.33 0.116 0.34 0.074 0.461 0.06 N.A.

amino acid I Y T W I E D H F
INFγ N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

MIP-1β 513 488 713 40 334 124 55 574 697
INFγ ratio N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

MIP-1β ratio 0.670 0.638 0.944 0.0575 0.467 0.166 0.0745 0.733 0.911
∆ STAG-LLM pred 0.487 0.777 0.327 0.664 0.987 0.04 0.85 -0.636 0.278

untrained LLM attention 2.85e-03 2.36e-03 2.38e-03 2.77e-03 2.94e-03 2.15e-03 2.16e-03 1.95e-03 2.11e-03
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[34] V. Gligorijević, P. D. Renfrew, T. Kosciolek, J. K. Leman, D. Beren-
berg, T. Vatanen, C. Chandler, B. C. Taylor, I. M. Fisk, H. Vla-
makis, et al., Structure-based protein function prediction using graph
convolutional networks, Nature Communications 12 (1) (May 2021).
doi:10.1038/s41467-021-23303-9.

[35] Z. Wang, S. A. Combs, R. Brand, M. R. Calvo, P. Xu, G. Price, N. Golo-
vach, E. O. Salawu, C. J. Wise, S. P. Ponnapalli, et al., LM-GVP: An
extensible sequence and structure informed deep learning framework
for protein property prediction, Scientific Reports 12 (1) (Apr 2022).
doi:10.1038/s41598-022-10775-y.

[36] R. Fasoulis, G. Paliouras, L. E. Kavraki, Graph representation learning
for structural proteomics, Emerging Topics in Life Sciences 5 (6) (2021)
789–802.

[37] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L.
Zitnick, J. Ma, R. Fergus, Biological Structure and Function Emerge from
Scaling Unsupervised Learning to 250 Million Protein Sequences, PNAS
(2019). doi:10.1101/622803.

[38] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, A. dos San-
tos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, et al., Language mod-
els of protein sequences at the scale of evolution enable accurate structure
prediction, bioRxiv (2022).

[39] H. Y. I. Lam, J. S. Guan, X. E. Ong, R. Pincket, Y. Mu, Protein lan-
guage models are performant in structure-free virtual screening, Briefings
in Bioinformatics 25 (6) (2024) bbae480. doi:10.1093/bib/bbae480.

[40] F. Wu, L. Wu, D. Radev, J. Xu, S. Z. Li, Integration of pre-trained pro-
tein language models into geometric deep learning networks, Communi-
cations Biology 6 (1) (2023) 876.

[41] L. M. Blaabjerg, N. Jonsson, W. Boomsma, A. Stein, K. Lindorff-Larsen,
Ssemb: A joint embedding of protein sequence and structure enables
robust variant effect predictions, Nature Communications 15 (1) (2024)
9646.

[42] M. Li, L. Kang, Y. Xiong, Y. G. Wang, G. Fan, P. Tan, L. Hong, Ses-
net: sequence-structure feature-integrated deep learning method for data-
efficient protein engineering, Journal of Cheminformatics 15 (1) (2023)
12.

[43] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding (2019).

[44] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cis-
tac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von
Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, A. M. Rush, Huggingface’s transformers: State-of-the-art nat-
ural language processing (2020).

[45] R. Vita, J. A. Overton, J. A. Greenbaum, J. Ponomarenko, J. D. Clark,
J. R. Cantrell, D. K. Wheeler, J. L. Gabbard, D. Hix, A. Sette, et al.,
The immune epitope database (IEDB) 3.0, Nucleic acids research 43 (D1)
(2015) D405–D412.

[46] 10x Genomics, A new way of exploring immunity–linking highly mul-
tiplexed antigen recognition to immune repertoire and phenotype, Tech.
rep (2019).

[47] A. Montemurro, L. E. Jessen, M. Nielsen, NetTCR-2.1: Lessons and
guidance on how to develop models for TCR specificity predictions, Fron-
tiers in Immunology 13 (2022). doi:10.3389/fimmu.2022.1055151.

[48] J. M. Heather, M. J. Spindler, M. H. Alonso, Y. I. Shui, D. G. Millar,
D. S. Johnson, M. Cobbold, A. N. Hata, Stitchr: stitching coding TCR nu-
cleotide sequences from V/J/CDR3 information, Nucleic Acids Research
50 (12) (2022) e68–e68.

[49] B. G. Pierce, Z. Weng, A flexible docking approach for prediction of t cell
receptor–peptide–mhc complexes, Protein Science 22 (1) (2012) 35–46.
doi:10.1002/pro.2181.

[50] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,

13
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