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Abstract— Task and motion planning (TAMP) can enhance
intelligent multi-robot coordination. TAMP becomes signifi-
cantly more complicated in obstacle-cluttered environments and
in the presence of robot dynamic uncertainties. We propose a
control framework that solves the motion-planning problem
for multi-robot teams with uncertain dynamics, addressing a
key component of the TAMP pipeline. The principal part of
the proposed algorithm constitutes a decentralized feedback
control policy for tracking of reference paths taken by the
robots while avoiding collision and adapting in real time to
the underlying dynamic uncertainties. The proposed framework
further leverages sampling-based motion planners to free the
robots from local-minimum configurations. Extensive exper-
imental results in complex, realistic environments illustrate
the superior efficiency of the proposed approach, in terms of
planning time and number of encountered local minima, with
respect to state-of-the-art baseline methods.

I. INTRODUCTION

Modern robotics applications require multiple heteroge-
neous robots to safely execute complex tasks in obstacle-
cluttered environments and over long horizons. The robots
must be able to reason about high-level tasks and derive
and track successfully the respective low-level paths. The
complexity of solving such high-dimensional continuous
problems explodes with more robots and goals. At the same
time, robots evolve subject to dynamics that often suffer
from uncertainties and unknown exogenous disturbances that
need to be addressed by the underlying algorithms. Task
and Motion Planning (TAMP) [1] has become a popular
paradigm as it interleaves both high-level reasoning and low-
level motion planning to find feasible paths that reach the
high-level goal efficiently, while feedback control is often
used to accommodate the robot dynamics [2], [3].

This paper considers the problem of motion planning for
a team of heterogeneous robots with uncertain 2nd-order
dynamics in obstacle-cluttered environments. We consider
that the robots have to navigate to certain locations of
interest in the workspace, which can be dictated by a higher-
level task-planning algorithm (see Fig. 1). Such multi-robot
navigation is an indispensable step in all task and motion
planning frameworks concerning efficient coordination of
multi-robot systems. A straightforward way to solve this
problem is to deploy a typical task and motion planner [4],
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Fig. 1. Ten circular robots driving to their current goals (marked as stars
with the same colors), following the proposed method. The purple, green,
and yellow robots belong to three different types. The larger circles indicate
locations of interest that have task-level constraints. The adjacent green
locations must be visited by a yellow robot and a green robot at the same
time. A robot must visit a blue location before it can visit a brown location.
Every location must be visited at least once, resulting in a multi-step task
plan, where the shown trajectories accomplish a single step. Scene adapted
from the floor plan of the Duncan Hall at Rice University.

[5] to find multiple steps of paths that achieve the high-
level goal, and then execute the plans with standard feedback
controllers. However, centralized motion planning typically
cannot scale well to large numbers of robots [6], and
standard planners cannot handle dynamic uncertainties [3].
Our previous work [6] alleviated these challenges by using
potential field-based adaptive controllers, to account for dy-
namic uncertainties, augmented with sampling-based motion
planners (SBMP) [7], [8] to free the robots from local-
minima configurations. Although promising, this approach
still cannot scale well to complex obstacle environments
with multiple robots (as verified in the results of Sec. V-
.3) due to the existence of a large number of local-minima
configurations that require many expensive SBMP calls.

While SBMP is the bottleneck of the scalability of our
prior approach [6], Multi-Agent Path-Finding (MAPF) algo-
rithms achieve improved efficiency by searching over some
graph representation of the workspace under the assumption
of discretized time and space [9], [10]. This motivates us
to develop a feedback controller that can track a multi-
robot path while avoiding all types of collisions during
online execution. The benefit is two-fold. First, it admits
multi-robot paths that are only collision-free at a more
coarse level of discretization, without requiring an SBMP to
compute feasible paths in the high-dimensional continuous



space. Second, it enables a general multi-robot navigation
framework that does not suffer from the limiting simplified
assumptions of typical MAPF solvers [9], [11]. We will
sketch out such a framework in Sec. IV.

The core contribution of this paper is the development of
a multi-robot feedback control policy such that the robots
simultaneously track given paths while avoiding collisions
with each other and workspace obstacles. The policy (i)
is decentralized, in the sense that each robot computes its
own control input based on local information from the sur-
rounding robots, (ii) adapts in real time to the uncertainties
in the robot dynamics, and (iii) provably guarantees inter-
robot and robot-obstacle collision avoidance. The potentially
conflicting path-tracking and collision-avoidance objectives
in the aforementioned policy might trap the robots in local-
minimum configurations. Therefore, we augment the feed-
back control policy with an SBMP to free the robots from
such configurations; the SBMP samples geometric paths in
the free space of the robots, and a separate path-tracking
control policy is used to track them. We conduct extensive
experimental studies in simulated environments that illustrate
the superiority of the proposed algorithm with respect to
state-of-the-art methods. The experimental results illustrate
that the proposed control policy outperforms the one based
on the previous work [6]; that is, it encounters significantly
fewer local-minimum configurations and hence results in
lower computational complexity.

The rest of the paper is organized as follows. Sec. II
provides an overview of works in the related literature. Sec.
III describes the considered problem while Sec. IV illustrates
the proposed methodology. Finally, Sec. V is devoted to
experimental results and Sec. VI concludes the paper.

II. RELATED WORK

Multi-robot planning: Different lines of research focus
on multi-robot motion planning (MRMP). The geometric
SBMP [7], [8], [12], [13] find geometric paths in the com-
posite continuous space, but cannot scale well to a large
number of robots [6]. MAPF algorithms can find paths for
multiple robots with increased efficiency when the typical
discretization assumption holds true [9], [10], [11].

Notably, one work proposes a robust execution framework
for MAPF paths by post-processing the paths to enforce the
dependencies being preserved during execution [14], but it
does not consider compliant feedback controllers that can
safely track the derived paths. Kinodynamic SBMP takes
robot dynamics into consideration by sampling control inputs
to forward simulate with the robot’s dynamics model in
order to find dynamically feasible trajectories [12], [15].
Such methods still suffer from obtaining inaccurate solutions
when uncertainties exist in the dynamics model, because the
simulation would deviate from the actual trajectories.

To solve long-horizon tasks, various TAMP frameworks
integrate different types of task planners [16], [17] and mo-
tion planners based on the assumptions made [18]. Geometric
SBMP is a typical choice in TAMP [1], [4], [5], [19], while
some other approaches focus on extending MAPF to solve

more complex high-level tasks [20], [21], but these works
do not consider problems with uncertain dynamics.

In this work, we focus on developing a feedback controller
that is capable of tracking a multi-robot trajectory computed
by a multi-robot planning framework, potentially leveraging
the above state-of-the-art planners, while avoiding collisions
online under uncertain dynamics.
Feedback control: Feedback control is a popular method-
ology to tackle motion-planning problems, since it offers
a closed-form policy for the control input of the system,
accommodating simultaneously the robot dynamics. Early
works focus on the concept of navigation functions [2] that
are based on correct-by-construction artificial potential fields
and guarantee convergence from almost all initial conditions.
Similar approaches are developed in [22], whereas [23], [24]
focus on Model Predictive Control frameworks. However,
feedback-control policies usually assume (i) spherical and
sparse workspaces, i.e., where the robots and the obstacles
are approximated by spheres placed sufficiently far from each
other, and (ii) simplified and perfectly known robot dynamics
(aka differential constraints) such as single or double integra-
tors. More complex shapes are considered in [25] and [26].
However, [25] does not establish convergence guarantees and
[26] is limited to single-integrator dynamics. Our previous
works [27], [28], [29] consider more complicated dynamics
including uncertainties and disturbances but are limited to
sequential, single-robot navigation.

III. PROBLEM FORMULATION

Consider N mobile robots operating in a compact and
bounded workspace W ⊂ Rn, with index set N :=
{1, ..., N}. Each robot occupies a sphere of radius ri > 0,
denoted by Ai(xi) ⊂ Rn, where xi ∈ Rn is the respective
geometric center, representing robot i’s state. We consider
the following 2nd-order dynamics for robot i ∈ N :

miv̇i = ui + fi(xi, vi, t), (1)

where vi = ẋi is the ith robot’s velocity, mi is its mass,
fi : R2n × R≥0 → Rn are functions modeling disturbances
and model uncertainties. We note that both mi and fi are
unknown, for i ∈ N , and cannot be used in the control
design. We impose the following assumption on fi(·):

Assumption 1. The functions fi(xi, vi, t) are locally Lips-
chitz in (xi, vi) ∈ R2n for each fixed t ≥ 0, continuous in
t ≥ 0 for each fixed (xi, vi) ∈ R2n, and satisfy the condition
∥fi(xi, vi, t)∥ ≤ αi∥vi∥+Fi, for all (xi, vi, t) ∈ R2n×R≥0,
i ∈ N , where αi, Fi are positive constants.

Assumption 1 is inspired by standard friction-like terms,
which can be approximated by continuously differentiable
velocity functions [27]. Further, Assumption 1 implies that
fi(·) are uniformly bounded with respect to xi and t. We
stress that the constants αi and Fi are unknown.

Moreover, let there be M disjoint obstacles in the
workspace Ok ⊂ W,∀k ∈ M := {1, ...,M}. For simplicity,
we consider that the workspace boundary ∂W is included in
the obstacle set {O1, . . . ,OM}.



Although this paper primarily focuses on the multi-robot
motion-planning problem, we provide here a more general
context where the robots have to execute a higher-level com-
plex task specification over a set of locations of interest in
the workspace. These locations are predefined configurations
ci ∈ W\ ∪k∈M {Ok}, i ∈ C := {1, ..., C} and are assumed
to be sufficiently far from the obstacles as well as each other:

∥ci − cj∥ > 2 ∗max
n∈N

rn + ν,∀i, j ∈ C, i ̸= j (2a)

min
m∈M

inf
y∈Ok

∥ci − y∥ > max
n∈N

rn + νo,∀i ∈ C, k ∈ M (2b)

for positive constants νo, ν.
The task specification can include complex symbolic

constraints, such as ordering constraints and collaboration
constraints (see Fig. 1). Planning Domain Specification Lan-
guage (PDDL) [30] is a typical choice to express such
complex tasks where each robot has different high-level
capabilities and many off-the-shelf planners can be used to
find a solution [16], [31]. We follow the definition of task
planning in typical TAMP literature [4], [5], [19], which is
defined over a finite set of states S, a finite set of actions A
allowing transitions between states, an initial state sinit ∈ S,
and a finite set of goal states Sgoal ⊆ S. The solution is to
derive a plan T = (⟨a01, a02, ..., a0N ⟩, ..., ⟨ah1 , ah2 , ..., ahN ⟩), that
transitions from the initial s0 to the goal state sh ∈ Sgoal,
where aji denotes the action assigned to robot i in step
j. With this formulation, we are interested in synchronous
problems [19], where any robot i that finishes executing its
action aji must wait until every other robot also completes
the execution of their actions in step j.

In this paper, we are only interested in navigation actions,
i.e., actions that safely navigate the robots among the lo-
cations C. Consequently, each step must be grounded to a
set of feedback controllers for the robots that are assigned
navigation actions. This grounding is natural because a
navigation action expresses the start cji and the immediate
goal cj+1

i of a robot i in step j. We note that not every robot
is always assigned an action in all steps. An“idle” robotis
also allowed to move to avoid other robots. Still, it must
return to where it started to ensure the state sj+1 is correctly
achieved after executing the controllers for other actions in
step j. At each step, the composite action ⟨aj0, a

j
1, ..., a

j
N ⟩

must be grounded to a set of collision-free trajectories pj =
(pj1, . . . , p

j
N ) : [0, Tf ] → F , for some duration Tf . Formally,

the problem we consider is the following:

Problem 1. Given a set of goal states Sgoal and a feasible
guidance trajectory in the form of a task and motion plan
T = (⟨(a11, p11), ..., (a

j
N , pjN )⟩, ..., ⟨(ah1 , ph1 ), ..., (ahN , phN )⟩),

design a multi-robot control policy to guarantee that the
robots reach a goal state s ∈ Sgoal.

IV. METHOD

This section presents the main results of the paper. We
propose a novel decentralized feedback controller for simul-
taneous multi-robot path tracking while avoiding collisions
and implicitly compensating for uncertain dynamics (Sec. IV-
A). The conflicting path-tracking and collision-avoidance

objectives of this controller might result in local-minima
configurations. Hence, we apply a geometric sampling-based
motion planner that frees the robots from such configura-
tions by computing suitable paths in the robots’ free space
(Sec. IV-C). Such paths are then tracked by the robots using
a funnel-based controller [6]. Our designed controller serves
as a crucial component in a general multi-robot navigation
framework (Sec. IV-D), where a guidance planner, consisting
of a PDDL task planner and a MAPF solver, derives the
guidance reference trajectories the controller must track in
the form of a task and motion plan. This framework is
agnostic to the choice of the planners being used.

A. Trajectory-Tracking-and-Collision-Avoidance Controller

We design a decentralized feedback control policy to
navigate the robots to their goals. The policy integrates
adaptive-control techniques and reciprocal barrier functions
to account for collision avoidance and the uncertain robot
dynamics. We consider that a higher-level MAPF algorithm
has provided multi-robot time-varying reference paths pi(t),
i ∈ N , connecting the robots’ initial and goal configurations.

Since the shapes of the obstacles might not have a closed-
form expression describing them, we approximate obsta-
cle k by Lk spheres, and define L̄ := {1, . . . , L1, L1 +
1, . . . ,

∑
k∈M Lk} as the respective index set for all the

obstacles spheres1. Moreover, we denote by ok and rok the
center and radius of the kth obstacle sphere. Note that the
spheres might be intersecting. By defining ei := xi−pi(t) ∈
Rn, ∀i ∈ N , dij := ∥xi − xj∥2 − (ri + rj)

2 − σ, ∀i, j ∈ N ,
i ̸= j, and distances to obstacle spheres as doik := ∥xi −
ok∥2 − (ri + rok)

2 − σo, ∀k ∈ L̄, the control design aims at
guaranteeing limt→∞ ei(t) = 0, and dij(t) > 0, doik(t) > 0,
∀t ≥ 0, i, j ∈ N , i ̸= j, k ∈ L̄. The constants σ and σo are
safety margins that will be used in the subsequent sections.

In order to reduce the number of potential local minima
configurations, we wish the robots to be affected by other
robots and the obstacles (to avoid collisions) only when
they are sufficiently close to each other, reducing thus the
configurations where the counteracting objectives (go-to-goal
and collision avoidance) can cancel each other. Therefore, we
design the smooth switch β(·, y) : [0, y] → [0, β̄], with

β(∗, y) :=

{
ϑ(∗), 0 ≤ ∗ ≤ y

β̄, y ≤ ∗
,

for positive constants y, β̄, and an appropriate polynomial
ϑ(·) that guarantees that β(·, y) is twice continuously differ-
entiable. We define now βij := βij(dij) := β(dij , s), ∀i, j ∈
N , i ̸= j, with s being a small positive constant representing
the distance where the agents take each other into account
for collision avoidance (e.g., a sensing radius - observe that
βij’s derivative is zero when dij > s). Given βij , we define
then the barrier-like functions bij := βij(dij)

−1 that blow
up to infinity when dij = 0, ∀i, j ∈ N , i ̸= j. Similarly,
we define the barrier-like functions boik := (βo

ik)
−1, where

βo
ik := βo

ik(d
o
ik) := β(doik, so), ∀i ∈ N , k ∈ L̄, for a small

1The spherical approximation is dropped in the next section.



positive constant so respresenting the distances where the
robots take the obstacles into account for collision avoidance.

We now define the free space of the robots as

F := {x ∈ RNn :dij > 0, doik > 0, i, j ∈ N , i ̸= j, k ∈ L̄}

and a potential function for each robot as ϕi : F ×Rn, with

ϕi(x, ei) :=
ki,1
2

∥ei∥2 +
k2
2

∑
j∈N\{i}

bij +
ki,3
2

∑
k∈L̄

boik, (3)

where ki,1, k2, ki,3 are positive constant gains, for all i ∈ N .
We further define the aggregated function ϕ : F × RNn,
with ϕ(x, e) :=

∑
i∈N ϕi(x, e), where e := [e⊤1 , . . . , e

⊤
N ]T ∈

RNn. By computing the time derivative of each ϕi, we obtain

ϕ̇i =ki,1e
⊤
i (vi − ṗi) + k2

∑
j∈N\{i}

∂bij
∂dij

(xi − xj)
⊤(vi − vj)

+ ki,3
∑
k∈L̄

∂boik
∂doik

(xi − ok)
⊤vi.

Since dij = dji and hence bij = bji, for all i, j ∈ N with i ̸=
j, we conclude that

∑
i∈N

∑
j∈N\{i}

∂bij
∂dij

(xi − xj)
⊤(vi −

vj) = 2
∑

i∈N
∑

j∈N\{i}
∂bij
∂dij

(xi − xj)
⊤vi leading to ϕ̇ =∑

i∈N {∆ϕ⊤
i vi − e⊤i ṗi}, with

∆ϕi :=ki,1ei + 2k2
∑

j∈N\{i}

∂bij
∂dij

(xi − xj)

+ ki,3
∑
k∈L̄

∂boik
∂doik

(xi − ok), i ∈ N . (4)

We design next the feedback-control algorithm. Define first
the reference velocity signals as

vri := −∆ϕi, i ∈ N , (5)

Note that ∆ϕi uses only local information from robot i’s
neighbors, as dictated by the communication radius si.
Further note that vri → ∞ in a collision, which is used
by the control design to guarantee safety.

Next, we define the variables m̂i and α̂i for each agent,
which aim to compensate for the unknown masses mi and
terms related to αi in Assumption 1. We design now the
decentralized control law for each agent as

ui = −∆ϕi + m̂iv̇ri − (kvi + α̂i)evi , (6a)

where evi := ẋi − vri , and kvi are positive constant gains,
∀i ∈ N . We further define the adaptation laws

˙̂mi = −kmi
(e⊤vi v̇ri + m̂i) (6b)

α̇i = kαi
(∥evi∥2 − α̂i), (6c)

where kmi
and kαi

are positive constant gains, for all i ∈ N .
The correctness of (6) is given in the following theorem.

Theorem 1. Consider the multi-robot system described by
the dynamics (1) subject to Assumption 1. The control (5)-(6)
guarantees that dij(xi(t), xj(t)) > 0 for all i, j ∈ N , i ̸= j,
doik(xi(t)) > 0, for all i ∈ N , as well as the convergence of
∆ϕi and evi to a set around zero.

Proof: First note that the boundedness of W and
pi(t) implies that, for x ∈ F , it holds that ∥ei∥ < Ē :=
maxi∈N {p̄i}+supW , where p̄i is the upper bound of pi(t),
i ∈ N , and supW is finite. Next, we define the adaptation
errors m̃i := m̂i−mi, α̃i := α̂i−(αi+

α2
i

2 + 1
2 ), for all i ∈ N ,

as well as the stacked vectors m̂ := [m̂1, . . . , m̂N ]⊤ ∈
RN , α̂ := [α̂1, . . . , α̂N ]⊤ ∈ RN , ev := [e⊤v1 , . . . , e

⊤
vN ]⊤.

The choice of α̃ will be clarified later. Next, we define
the overall state ζ := [x⊤, e⊤, e⊤v , m̃

⊤, α̃⊤]⊤ and the set
Ω := F × ĒN × RNn+2N . Note that, since the robots start
at collision-free initial positions, it holds that ζ(0) ∈ Ω.
Furthermore, the dynamics (1) and control policy (6) are
locally Lipschitz in ζ over Ω and continuous in t over R≥0.
Therefore, according to [32, Theorem 2.1.3], we conclude
that a solution ζ(t) exists for all t ∈ [0, τmax), for a positive
constant τmax such that ζ(t) ∈ Ω, for t ∈ [0, τmax). Our goal
is to prove that τmax = ∞.

Let now the Lyapunov function candidate

V = ϕ(x, t) +
∑
i∈N

{
mi

2
∥evi∥2 +

1

2kmi

m̃i +
1

2kαi

α̃i

}
,

which is well-defined for ζ ∈ Ω and hence for t ∈
[0, τmax). Differentiating V and employing Assumption 1,
ϕ̇ =

∑
i∈N {∆ϕ⊤

i vi − e⊤i ṗi}, vi = evi + vri , (5), (6), and
∥ei∥ ≤ Ē, we obtain

V̇ ≤
∑
i∈N

{
Ēv̄ − ∥∆ϕi∥2 − (kvi + α̂i)∥evi∥2 + αi∥evi∥∥vi∥

+ ∥evi∥Fi + m̃ie
⊤
vi v̇ri − m̃i(e

⊤
vi v̇ri+m̂i) + α̃i(∥evi∥2−α̂i)

}
for t ∈ [0, τmax), where v̄ is the upper bound of ṗi. By
completing the squares and using vi = evi + ∆ϕi, we
obtain αi∥evi∥∥vi∥ ≤ αi∥evi∥2 +

α2
i

2 ∥evi∥2 + 1
2∥∆ϕi∥2 and

∥evi∥Fi ≤ 1
2∥evi∥

2 + 1
2F

2
i . Similarly, it is easy to obtain

−m̃im̂i ≤ − 1
2m̃

2
i +

1
2m

2
i and −α̃iα̂i ≤ − 1

2 α̃
2
i +

1
2α

2
i , for all

i ∈ N . By using the aforementioned relations and in view
of α̃i = α̂i − (αi +

α2
i

2 + 1
2 ), i ∈ N , V̇ becomes

V̇ ≤ −1

2
∥∆ϕ∥2 − kv∥ev∥2 −

1

2
∥m̃∥2 − 1

2
∥α̃∥2 + F̄

where kv := mini∈N {kv1 , . . . , kvN }, ∆ϕ :=
[∆ϕ⊤

1 , . . . ,∆ϕ⊤
N ]⊤, and F̄ := NĒv̄ + 1

2

∑
i∈N

{
F 2
i +

m2
i + α2

i

}
. Therefore, by employing [33, Theorem 4.18],

we conclude that ∆ϕ(t), ev(t), m̃(t), α̃(t) are upper
bounded and converge to a set around zero, whose value
is proportional to F̄ and inversely proportional to kvi ,
i ∈ N . In view of (4), the boundedness of ∆ϕ implies
that the robots avoid collisions with each other and the
workspace obstacles, i.e., there exist positive constants dij
and doik such that dij(xi(t), xj(t)) ≥ dij , for all i, j ∈ N
and doik(xi(t) ≥ doik, for all i ∈ N , and t ∈ [0, tmax).
Furthermore, the boundedness of ev , m̃, α̃ implies the
boundedness of m̂i(t) and α̂i(t), for all i ∈ N , and
t ∈ [0, tmax). By differentiating (5), we further conclude the
boundedness of v̇ri(t) and hence of the signals ui(t), ˙̂mi,
˙̂αi, for all i ∈ N , and t ∈ [0, tmax).



Finally, the aforementioned analysis implies that ζ(t) ∈
Ω′ for t ∈ [0, tmax), where Ω′ is a compact subset of Ω.
Hence, by invoking [32, Theorem 2.1.4], we conclude that
tmax = ∞ and the conclusion of the proof.

Theorem 1 guarantees the convergence of the multi-robot
system to a set around a configuration that satisfies ∆ϕi = 0,
for all i ∈ N , i.e., the set S = {x ∈ F : ∆ϕi = 0,∀i ∈
N}. In particular, (4) implies that such configurations x∗ =
[(x∗

1)
⊤, . . . , (x∗

N )⊤]⊤ ∈ S satisfy

ki,1e
∗
i = −2k2

∑
j∈N\{i}

∂bij
∂dij

(x∗
i − xj)− ki,3

∑
k∈L̄

∂boik
∂doik

(x∗
i − ok)

(7)

with e∗i = x∗
i − pi(t), for all i ∈ N . Note that, since the

robot goals li are sufficiently far from each other as per
(2), we can choose sufficiently small constants s, so in the
definition of the collision functions βij and βo

ik, respectively,
to guarantee ∂bij

∂dij
|(xi,xj)=(li,lj) =

∂boik
∂do

ik
|xi=li = 0 for all

i, j ∈ N with i ̸= j, k ∈ L̄, i.e., there’s no inter-
robot or robot-obstacle influence at the goal configurations.
Therefore, the goal configurations li belong to the set S,
which implies that the robots can safely converge to an area
around their goals. Nevertheless, the set S contains local-
minimum configurations, i.e., configurations x∗

i ̸= li that
satisfy (7). In order to escape such undesired configurations,
we use the respective scheme of our previous work [6], which
we present here for completeness. The scheme consists of a
(i) controller that guarantees tracking of a geometric path
within predefined bounds and (ii) a sampling-based motion
planner that derives such a path. We briefly describe these
procedures in the next subsections.

B. Path Tracking with Predefined Bounds

We present here a control policy that guarantees tracking
of a collision-free path xd within predefined bounds, us-
ing the Prescribed Performance Control (PPC) methodology
[34]. This path is the output of a geometric sampling-
based motion planner described in the next section, which is
called by the robots to escape from the aforementioned local
minima configurations. Let the path be endowed with a time
interval, resulting in the time trajectory xd(t), and let x∗

i ,
∀i ∈ N denote the state of the robots at this configuration.
Without loss of generality, we assume that the domain of
xd is [0, tf ] for a designer-specified positive constant tf . We
next fix the index i since the control design concerns one
robot. Moreover, we consider that xd(0) = x∗

i (0), which can
be guaranteed by next section’s sampling-based planner.

PPC achieves evolution of an error state in prescribed
bounds, regardless of the unknown dynamic terms mi and
fi(·) of (1). More specifically, PPC aims at guaranteeing
|eℓ(t)| < ρ, ∀ℓ ∈ {1, . . . , n}, t ≥ 0, where eℓ is the ℓth
component of the error metric e := xi − xd(t), and ρ > 0 is
a prescribed positive constant2 to bound e(t). This ρ is used
in the subsequent section to define an extended free space for

2The original PPC methodology actually considers time-varying ρ(t), but
a constant ρ suffices in our case.

the motion planner, since it dictates how close the trajectory
of the robot can evolve to xd.

The safety guarantees of Theorem 1 imply that, at a local-
minimum configuration x∗, the robots will be far enough
from each other the obstacles, i.e.,

inf
y∈Aj(x∗

j )
∥x∗

i − y∥ > σ̃,∀i, j ∈ N , i ̸= j (8a)

inf
y∈Ok

∥x∗
i − y∥ > σ̃o,∀i ∈ N , k ∈ M, (8b)

for some positive constants σ̃, σ̃o. In the motion planner of
the next subsection, xd(t) is chosen such that if robot i tracks
it sufficiently close (as defined by min{σ̃, σ̃o}), it will not
collide with other robots or obstacles, i.e.,

|eℓ| ≤ min{σ̃, σ̃o} ⇒
Ai(xi(t)) ∩ Aj(x

∗
j ) = Ai(xi(t)) ∩ Ok = ∅, (9)

∀ℓ ∈ {1, . . . , n}, j ∈ N\{i}, k ∈ M and t ∈ [0, tf ].
In particular, by choosing the constant ρ such that ρ <
min{σ̃, σ̃o}, we guarantee avoidance of collisions between
robot i and other robots/obstacles since the path-tracking
control policy ensures −ρ < eℓ(t) < ρ, ∀i ∈ [0, tf ],
ℓ ∈ {1, . . . , n}. We describe now the PPC control policy
and refer the reader to [34] for the theoretical analysis of the
establishment of the aforementioned inequalities.

PPC relies on the transformation T(∗) = ln
(

1+∗
1−∗

)
. In par-

ticular, we introduce the transformed error ε = [ε1, . . . , ε]
⊤,

with εℓ = T
(
ρ−1eℓ

)
, ℓ ∈ {1, . . . , n}. The control policy

aims then to retain the boundedness of ε(t), t ∈ [0, tf ],
which implies that −ρ < eℓ(t) < ρ, for all t ∈ [0, tf ] and
ℓ ∈ {1, . . . , n}. We further define JT (∗) = ∂T(∗)

∂∗ as the
gradient of T. The PPC policy is now defined as follows:
Step I: Design the reference velocity vr = −kρ−1rεε,
where rε = diag

{[
JT (ρ

−1eℓ)
]
ℓ∈{1,...,n}

}
and k is a positive

constant gain.
Step II: Define the velocity error ev = [ev1 , . . . , evn ]

⊤ =
ẋi − vr and let a constant ρv satisfying ρv > ∥ev(0)∥.
Step III: Design the controller ui = −kvρ

−1
v rεvεv , where

εv = [εv1 , . . . , εvn ]
⊤, with εvi = T(ρ−1

v evi), ℓ ∈ {1, . . . , n},
rεv = diag

{[
JT (ρ

−1
v evℓ)

]
ℓ∈{1,...,n}

}
, and kv is a positive

constant gain.

C. Application of Motion planner

We execute the decentralized feedback control policy of
Sec. IV-A to track the reference paths until the multi-robot
system is trapped in a local minimum. We can detect the
local minimum by checking if the robots all have a velocity
close to zero (below a certain threshold) while not every
robot has arrived at its goal configuration. Similar to our
previous work [6], we select a subset of the robots that
haven’t arrived to perform sampling-based motion planning.
The motion planner finds a path with a clearance of at
least min{σ̃, σ̃o} from the obstacles and the other robots,
to ensure the PPC path-tracking controller tracks it without
collisions. Different heuristics can be used to select the
robots for motion planning. We prioritize choosing a single



“unarrived” robot for planning efficiency and incrementally
add arrived robots that might be blocking the passages and
creating local minima, which was proven to be efficient
in [6]. The probabilistic completeness guarantee of SBMP
ensures escaping from the local minima, and any typical
SBMP, such as RRT-Connect [13], can be applied.

D. A General Multi-robot Navigation Framework

The proposed algorithm presented in Sec. IV-A and IV-
C can be used in a general task and motion planning
framework, as presented in the sequel. Such a framework
consists of two layers: a guidance planner and the designed
control policy. The guidance planner follows typical TAMP
paradigm [1], [4], [5], except that we use a MAPF solver
instead of the SBMP. The input to the guidance planner is the
task planning domain, the motion planning domain, and a set
of goal states Sgoal for the given task, encoded in PDDL. We
use a task planner to reason over the high-level constraints
and compute a task plan T , minimizing some heuristic costs
that approximate the path lengths between locations.

Our designed multi-robot trajectory-tracking control pol-
icy guarantees real-time collision avoidance, allowing us
hence to derive geometric paths that are only collision-free
at a more coarse level of discretization of time and space.
This makes a MAPF solver [10] suitable because we can
leverage its efficiency while not suffering from its limitations
of simplified assumptions (e.g., point robot, discrete time,
and discrete space) of real-world problems. Most state-of-
the-art MAPF solvers can be applied. The MAPF solver
computes paths on a discrete graph, and a popular way to
obtain such a graph is to apply a grid discretization on the
given environment [11]. Since this paper does not focus on
how to obtain such a graph, we assume that we can simply
apply a grid discretization that preserves the connectivity of
the environment, and guarantees the locations of interest to
be in different grids (i.e., the occupancy of a grid depends on
if part of a spherical obstacle resides in it, and the radius of
the robot is guaranteed to be less than the grid size), thus not
violating the typical assumptions of the MAPF solvers, such
as the vertex conflicts. We refer the readers to the typical
MAPF literature for detailed definitions [10], [11].

In each step, the query to the MAPF solver is constructed
as follows. If a robot is assigned a navigation action, we add
the start-goal pair into the MAPF query. Otherwise, we set
the goal of the robot to be the same as its start location (i.e.,
cg = cs), to force driving it back to its current location in
case it needs to move for coordination; this helps resolve
conflicts when cs blocks the path for another robot. The
MAPF solver searches for a solution in the discrete graph.
It either returns geometric paths that are conflict-free at the
discrete resolution or reports failure, indicating an alternative
task plan is needed. Then, we perform time parametrization
over the paths to obtain a multi-robot reference trajectory as
the output of the planner.

The guidance trajectory T is sent to the controller we
designed in Sec. IV-A. For each step ⟨(aj1, p

j
1), ..., (a

j
N , pjN )⟩

in T, we execute the controller to track trajectories pj1, ..., p
j
N

simultaneously until a local minima configuration is detected.
We then invoke SBMP followed by a PPC path tracking
controller as described in Sec. IV-C repeatedly until all the
robots arrive at their current goal locations.

V. EXPERIMENTS

1) Baselines: We present a comparison of our proposed
framework with two baselines. For all baselines and our
proposed method, we use the same open-source temporal
planner, OPTIC [16]. Other temporal planners can also be
applied. For the MAPF solver [10] used by our method, we
apply a grid discretization to the environments with grid size
being maxi∈N ri, i.e., the maximum robot radius.
TPMP: This baseline is directly adapted from a typical
TAMP framework [4] to the multi-robot navigation problem
considered in this paper. It uses a task planner to assign
robots to locations across multiple steps, and leverages a
centralized SBMP, RRT-Connect [13], for motion planning.
Then, we use the PPC controller to track the paths, as they
are guaranteed to be collision-free by the clearance.
TPPF: This is a direct extension of our previous work [6] to
the complex tasks considered in this paper. The task planner
computes a task plan, and for each step in the plan, the start
and goal locations of the involved robots are directly sent to
the control policy, which is a potential field-based controller
augmented by sampling-based motion planners. It keeps
switching between the potential field controller and tracking
paths computed by SBMP upon local minima detection.
More details can be found in the previous paper [6].

2) Benchmarks: We test the methods on five scenes as
shown in Fig. 2; scene 1 and 2 are the same used in
previous work [6], scene 3 is a new scene created with
several narrow passages to introduce difficulties, and the
other scenes are adapted from real-world buildings (e.g.,
scene 4 from the Duncan Hall in Rice University and scene
5 from the Ångström Laboratory in Uppsala University). In
the navigation domain, we have three types of robots (shown
in green, yellow, and purple) and three types of locations
(shown in blue, brown, and green), requiring the ordering,
collaboration, and capability constraints to be satisfied: a
robot (with any color) must visit a blue location before
visiting a brown location, while a yellow and a green robot
must simultaneously visit a pair of adjacent green locations.
We consider robots of mi = 1 and ri = 2, i ∈ N . The
functions fi(·) are given by fi = Cf

i,1vi + Cf
i,2 tanh(vi) +

Af
i [sin(ω

f
i,1t + ϕf

i,1), cos(ω
f
i,2t + ϕf

i,2)]
⊤, where Cf

i,1, Cf
i,2,

Af
i,1, Af

i,2 are diagonal matrices with values randomly chosen
in (−1, 1). Similarly, ωf

i,1, ωf
i,2, ϕf

i,1, ϕf
i,2 are parameters

randomly chosen in (−1, 1).
3) Results: Each method is run 20 times for each scene

with an increasing number of robots (5, 10, 15, 20). Similar
to the previous work [6], we are interested in comparing
the average total motion planning time (see Fig. 2), because
the feedback controllers are run online in real time. For
baselines, we count the total time spent in SBMP, and for
the proposed method, we count both the SBMP time and



Fig. 2. Top: The five scenes with the initial positions of 20 robots as colored circles and the 20 goals as stars. Yellow, green, and purple circles represent
three different types of robots. Blue, brown, and green stars represent three different types of locations. We use (gray) circular obstacles to approximate
the obstacles. Bottom: the average motion planning time (20 runs each scenario) of the methods. An omitted line shows that no runs succeeded.

TABLE I
AVERAGE NUMBER OF LOCAL MINIMA ENCOUNTERED

# robot 5 10 15 20
method Proposed TPPF Proposed TPPF Proposed TPPF Proposed TPPF
scene 1 0 3.4 0 11.6 0 8.6 0 3.05
scene 2 0 4.2 0 4.25 0 3.4 0 6.85
scene 3 0 7.75 0 7.8 0.05 15.0 0 15.8
scene 4 1.00 15.15 0.85 15.65 0.70 17.2 0.55 15.85
scene 5 0 20.42 0 22.5 0.05 18.35 0 18.3

the MAPF time. The TPMP baseline performs the worst. It
can scale to 10 robots in the easier scene 1 and 2, and to 5
robots in scene 4, but it takes more than 100 seconds in mo-
tion planning, which suggests that directly applying typical
TAMP frameworks designed for single-robot problems [4],
[5] cannot scale well in multi-mobile-robot navigation tasks.
The TPPF baseline performs much better than TPMP, but it
still takes up to more than 50 seconds in motion planning in
complex scenes, because unlike the proposed method which
leverages some guidance paths to drive the robots, driving
the robots to their current goals in a greedy way is likely to
create local minima in cluttered settings with uncertainties,
as already observed in our previous work [6].

Our proposed method succeeds in all scenarios, with an
average total motion planning time of less than a second.
It further vastly outperforms TPPF because the proposed
controller can follow a trajectory while avoiding collisions,
which in turn allows us to compute paths that are collision-
free on a more coarse discretization of the time and space,
enabling us to leverage efficient discrete space planners.

Even the proposed controller can get stuck in local minima
due to uncertainties, we empirically found that our frame-
work encounters much fewer local minima than the TPPF
method. Table I shows the average number of times when
the system is trapped in a local minimum.

Our method encounters the most number of local minima
in scene 4, where we encounter 1.0 local minima on aver-
age in 5-robot cases, probably due to locations of interest

being adjacent to cluttered narrow doors, while the TPPF
baseline encounters local minima 15.15 times. In scene 4,
our method encounters fewer local minima with more robots
because oftentimes some robots have to travel through many
narrow passages under uncertain dynamics, while with more
robots, the task planner can assign locations to hopefully
closer robots. In most other scenarios, our method does not
encounter any local minima. Note that in the experiments,
we have a fixed number of locations for each scenario, so
with an increasing number of agents available to the planner,
the number of steps in the task plan decreases. This explains
why TPPF sometimes may encounter fewer local minima
with even a larger number (15, 20) of robots (e.g., scene 5).
Each local minimum, however, is usually more difficult to
resolve in those cases, because it usually has more robots
stuck. This is also reflected in a much higher planning time
shown in Fig. 2. Generally, in complex scenarios, the robots
are cluttered around narrow passages, making the controller
used in TPPF often trapped, while our proposed method
leverages guidance trajectories that attempt to resolve many
such conflicts even before executing the controller.

Note that since OPTIC is an anytime planner that keeps
improving task plans, we set the timeout for each call to be
30 seconds and use the last plan generated. The task planning
time is not reported for comparison because we only need
to call OPTIC once for each scenario, and the task planning
time becomes the same for all the methods.

VI. CONCLUSION

We propose a decentralized feedback controller that can
track given guidance trajectories and guarantees collision
avoidance among the robots and between robots and ob-
stacles, under 2nd-order uncertain dynamics. The controller
is enhanced by an SBMP to free the controller from local
minima. The proposed controller can serve as a crucial com-
ponent in an efficient multi-robot coordination framework,
composed of a guidance planner and the proposed controller.



Such a framework is necessary to solve complex tasks in the
real world that require both planning for challenging task-
level constraints and execution under high-order uncertain
dynamics. The framework we proposed is general and ag-
nostic to the planners being used. The application of the
proposed controller allows the guidance planner to focus
on resolving conflicts (collisions) at a more coarse level,
leading to the computational efficiency demonstrated in the
experimental results. Our approach also encounters fewer
local minima compared to our previous work, resulting in
much less planning time required to finish each task. This
work opens up promising future directions, such as exploring
more meaningful connections between the controller and the
task and motion planner, decentralizing planning and sensing
(potentially leading to asynchronous multi-robot problems),
and reasoning over partially observable environments.
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