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Abstract

Protein-ligand docking aids structure-based drug discovery by computation-
ally modelling protein-ligand interactions. DINC (Docking INCrementally)
is one approach to molecular docking that improved the docking of large
ligands using a parallelized incremental meta-docking. Traditional docking
tools, including DINC, explore the flexibility of the ligand in a single receptor
binding pocket assuming limited flexibility of the receptor backbone. This
simplifying assumption narrows down the docking search space but hinders
successful docking for flexible receptors. DINC-Ensemble implicitly considers
receptor backbone flexibility by running DINC docking in parallel on differ-
ent receptor conformations. Inputs to DINC-Ensemble include (1) a ligand
and (2) a list of different receptor conformations. For each ligand-receptor
pair DINC-Ensemble performs incremental meta-docking in parallel. As a
result, multiple ligand poses are generated in the binding pockets of different
receptor conformations. These poses are then ranked, and the lowest scoring
pose is selected. Two main outputs provided by a successful run of DINC-
Ensemble are (1) the best scoring ligand poses and (2) a ranked list of selected
receptor conformations. The best scoring ligand pose can be used to under-
stand the interactions between the receptor and the ligand that influence the
binding. The ranked list of receptor conformations shows the best receptor
conformation fit for a given ligand and can provide insight into ligand-induced
conformational selection. We provide DINC-Ensemble as a Python package
and a free web server at https://dinc-ensemble.kavrakilab.rice.edu/.
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1. Introduction

Molecular docking is a common computational approach for modeling
protein-ligand interactions and is used to assist structure-based drug discov-
ery [1]. Some of the early attempts at molecular docking date back to 1990s
[2, 3] and have since been consolidated with dozens of widely used imple-
mentations such as AutoDock4 [4], Vina [5], Glide [6], GOLD [7]. Outlined
traditional docking methods model the ligand binding in two stages (1) sam-
pling and (2) scoring. In the sampling stage, ligand pose is generated in the
protein binding pocket using search algorithms that explore the search space
of the ligand and its degrees of freedom (i.e., translation, rotation, and angles
of rotatable bond). In the scoring stage, the energy of the protein-ligand com-
plex is approximated using scoring functions. The best-scoring ligand pose is
selected, and the score is presented as an approximated binding energy. To
deal with the exponential growth of the search space for large ligands, DINC
[8] (Docking Incrementally) has been developed as a meta-docking incremen-
tal approach. Molecular docking results can be used for structure-based drug
design in the geometry prediction setting or high-throughput virtual screen-
ing [9]. The ultimate goal of molecular docking is to speed up drug discovery
by allowing for computational analysis of the protein-ligand complex, there-
fore avoiding the costly and time-consuming experimental resolution of the
complex. While traditional docking methods have had considerable success
in the past they encode simplifying assumptions that hinder the accuracy of
the tools.

One major assumption of the traditional docking tools is that the back-
bone of the receptor is rigid. This is in line with the early ‘key-lock‘ [10]
theory of molecular recognition. However, other theories including ‘induced-
fit‘ [11] and ‘conformational selection‘ [12] suggest that receptors are flexible
during recognition. While the rigid backbone receptor assumption narrows
down the search space and speeds up the sampling, it hinders the perfor-
mance of the methods for flexible protein receptors. Some methods, including
AutoDock Vina [5] provide an option for side-chain flexibility by sampling
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several binding-site side-chains. This approach is useful for modeling local-
ized changes in the binding pocket but does not model larger changes in the
protein backbone. Accounting for receptor backbone flexibility has been rec-
ognized as a major challenge in molecular docking and one of the proposed
approaches to tackle it is ensemble docking [9].

Ensemble docking can be achieved by docking a ligand to multiple con-
formations of the protein receptor[13]. Receptor backbone flexibility is not
explicitly sampled during docking but is taken into account implicitly. A few
works have recently applied this approach showing promising results on a
range of protein targets including G protein-coupled receptors [14], kinases
(ALK, CDK2, VEGFR2, wee1) [15], Estrogen Receptor α [15] and SARS-
Cov2-related targets (N-protein, S-protein) [16, 17]. Besides providing the
ligand pose and predicted binding energy of the complex, ensemble docking
allows for a broader analysis of conformational selection with functional im-
plications. Despite its long history and recent promising applications, the
software infrastructure for ensemble docking is not widely accessible. In con-
trast to dozens of different molecular docking servers and tools, the only free
web servers providing ensemble docking functionalities at the moment are
EDock-ML [18] and DockThor-VS [19]. EDock-ML implements a machine-
learning approach to virtual screening with ensemble docking. DockThor-VS
is a platform for large scale virtual screening of small ligands and contains
an ensemble docking setup.

In addition to employing an ensemble docking strategy, DINC-Ensemble
also allows ensemble docking of large ligands incrementally to the receptor
ensemble. Ligand size represents another big challenge for molecular docking,
as the search space for identifying the optimal ligand pose increases with the
increase in the number of rotatable bonds (i.e. degrees of freedom). Many
advanced docking tools exhibit lower performance when docking large ligands
compared to their performance with small ligands [20].

In this work, we propose a novel ensemble parallel docking program
DINC-Ensemble. DINC-Ensemble is well suited for docking large ligands to
flexible receptors and it builds on our previous tool DINC [8] for docking large
ligands incrementally. DINC is a meta-docking approach that incrementally
performs docking using an underlying docking engine. Main improvements
over the previous approach include: (1) providing receptor ensemble inputs
and an ensemble analysis of docking results, (2) upgrading the docking en-
gine to the most recent version of AutoDock Vina[21], and (3) providing a
Python package and a web server. DINC-Ensemble will allow researchers to
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explore the ensemble docking strategy for large ligands.

2. Materials and methods

2.1. Algorithm

DINC-Ensemble can tackle multiple protein receptor inputs in parallel
and relies on an incremental meta-docking approach for docking the ligand
to each of the binding pockets of the receptor. As input, DINC-Ensemble
takes (1) a ligand structure file (.mol2 format), (2) #N receptor confor-
mations (.pdb, .pdbqt formats), and (3) a set of docking parameters (see
Supplementary Table 1). Ligand and receptor inputs are first prepared for
docking. Next, the incremental docking procedure is started. As output,
DINC-Ensemble provides (1) structures of a few best scoring ligand poses
(.pdb files), (2) a list of energies and RMSD values for the ligand poses gen-
erated across receptor conformations, and (3) a list of receptor conformations
ranked by the best score achieved for the ligand. Improvements of DINC-
Ensemble in comparison to the previous iteration of the DINC algorithm are
highlighted in the Supplementary Table 6.

2.1.1. Preparing the input ligand and receptor

First, we prepare the ligand for docking with DINC-Ensemble. Hydrogens
and gasteiger charges are added to the ligand and types and unique names
are assigned to ligand atoms using AutoDock Vina prepare ligand protocol.
With this, an initial torsion tree for the ligand is created and saved in a
.pdbqt format. Next, we fragment the ligand for incremental docking. We
first select the root atom and the root node of the torsion tree and then
split the tree into #K incremental overlapping subtrees (fragments). Each
fragment has a subset of the rotatable bonds active during docking limiting
the search space at each step to a fixed size.

Next, we prepare receptors with AutoDock Vina prepare receptor script.
Missing hydrogens are added and gasteiger charges are calculated. We collect
the binding box parameters for the reference receptor from user input (see
Appendix Parameters). We align additional receptors in the ensemble to the
reference receptor using sequence alignment followed by structural superpo-
sition (using PyMol’s align implementation). We identify the binding site for
all receptors using the input binding box.
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With these steps, we prepare the input ligand, receptors, and binding
sites for docking with DINC-Ensemble. Note that we recommend for users to
provide protonated inputs, as we do not assign protonation states internally.

2.1.2. Incremental ensemble meta-docking

The incremental ensemble meta-docking approach used by DINC-Ensemble
is described in Figure 1. The x-axis follows the incremental component of the
algorithm, the y-axis follows the ensemble component, and the z-axis shows
the replicas of parallelized meta-docking. Each orange cell in the figure cor-
responds to a single docking thread that runs a docking engine. Under the
main schema in the Figure 1 is the outline of the algorithm is described with
the three main components of (1) initializing docking threads, (2) running
the docking threads, and (3) aggregating the results of the docking threads.
These steps are repeated as the fragments grow and until the full ligand is
reconstructed in each of the receptor conformations.

A docking thread is initialized by assigning a single receptor-ligand pair to
the thread. The ligand assigned to a thread at incremental step i corresponds
to the i−th fragment generated in the preparation stage. At each incremental
step, #K replicas are initialized for each of the #N receptor conformations
resulting in K ∗ N active threads at a time. Each of the docking threads
performs docking with the docking engine. The docking engine used by
default is Vina 1.2.0 [21]. In each run, a docking thread generates several
output ligand poses with corresponding energy scores. From one incremental
time step to the next the results are aggregated by choosing a few unique
minimum energy poses (clustering of poses is used to reduce redundancy).
These “best” poses are used to initialize the next round of replicas.

Finally, full final ligand poses across multiple receptors in the ensemble
are clustered and aggregated across different receptors. Ligand poses are
ranked using the predicted energy scores as well as the cluster size. Besides
the ranked ligand poses, input receptors are also ranked based on how well
the ligand is docked to each of the receptors.

2.1.3. Parallel implementation

Docking across multiple replicas and receptors is parallelized for each
iteration (column of yellow rectangles in Figure 1). Parallel processing is
implemented using python’s multiprocess library and single docking rounds
(one fragment, one receptor and one replica) are implemented as a subpro-
cess. Each subprocess in an iteration waits for others to complete (joining).
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When the subprocess is joined with others from the same iteration, docking
results are aggregated and clustered. Next iteration is initialized and new
subprocesses are started. This parallelization allows users to perform ensem-
ble docking without significant time costs. For example, if a user has access
to a machine with 20 cores, they can perform docking across 5 receptors with
4 replicas each (using all 5 × 4 = 20 cores) in the same time frame as they
would need to dock a ligand to a single receptor.

2.2. Benchmarking and case study

2.2.1. Incremental meta-docking benchmark

We first test the ability of DINC-Ensemble to dock large ligands to a
single receptor. To that end, we construct Dataset 1 (Supplementary Tables
2,3,4) as a subset of the dataset compiled by Devaurs et al [20] to benchmark
DINC-Ensemble performance in docking large ligands.

Dataset 1 is based on five datasets from the literature (Dhanik [8], Renard
[22], LEADS [23], Hou [24], and PPDBench[25]). These datasets were used
to evaluate large ligand docking performance in different settings. Devaurs et
al [20] further filtered these datasets to identify challenging docking targets.

Dhanik dataset extracted large ligands from an older version of the PDB-
Bind dataset [26]. Devaurs et al. further filtered the Dhanik dataset and
identified challenging large ligands within it that have between 7 and 30 ro-
tatable bonds. The Renard dataset was used to benchmark docking methods
on small peptides. Devaurs et al. extracted a subset of peptides from this
dataset having between 10 and 22 rotatable bonds that were challenging for
docking with classical approaches. The LEADS dataset was constructed to
benchmark docking performance on peptides of length 3 to 12. Devaurs et
al filtered out the small easy peptides from that dataset. The Hou dataset
contains ligands from a more recent version of PDBBind dataset [26] that
are particulary challenging for traditional docking methods. The PPDBench
dataset contains protein-peptide crystal structures composed of 9 to 15 amino
acids.

Dataset 1 contains 92 experimentally resolved crystal structures of large
ligands with degrees of freedom ranging from 7 to 30. We use this dataset
in a redocking setting to test docking performance of large ligands to their
native receptor conformations. Note that we do not test the ensemble dock-
ing paradigm with this dataset, but just validate our implementation of the
parallelized incremental docking paradigm.
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We run DINC-Ensemble with the following settings inspired by a previous
benchmerk of DINC [20]. We use a single receptor input per ligand (native
conformation from the crystal structure). We randomize each ligand prior
to docking. We use 24 replicas per ligand and split ligands into 3 fragments
adding 3 new active bonds per iteration. We define the center and dimensions
of the binding box based on the input ligand with 5Å padding. We use the
Vina docking engine with exhaustiveness parameter set to 4, using 1 CPU
per Vina run.

Three docking methods DINC, DINC-Ensemble and Vina are compared in
this experiment. The major difference between DINC-Ensemble and DINC in
this setting is that DINC relies on an older version of Vina in its incremental
approach. We run DINC [27] using the same parameters as DINC-Ensemble.
The major difference between the incremental approaches (DINC and DINC-
Ensemble) and Vina is that Vina docks the ligands with all degrees of freedom
active and without incremental steps. To make the comparison fair between
Vina and the incremental approaches, we run 24 replicas of Vina and use the
exhaustiveness 12 (while in the incremental runs we had 3 iterations with
exhaustiveness 4). This way all methods are given equal number of docking
cycles to find a good ligand pose.

2.2.2. Ensemble docking case study

To showcase the utility of ensemble docking, we devise a case study of
ensemble docking for cyclin dependent kinase CDK2. CDK2 performs a vital
signaling function in the cell cycle controlling the G1/S transition. Hyper-
activity of CDK2 can lead to disregulation of the cell devision which is one
of the hallmarks of cancer. Hence, CDK2 inhibitors are an active target for
cancer therapy [28].

CDK2 activity is characterized by a large conformational change induced
by cyclin binding [29]. This change is achieved by the motion of the CDK2
activation loop (A-loop) from an A-loop OUT state to an A-loop IN state.
Recent work revealed allosteric effects that some inhibitors have on cyclin
binding [30] and identified ligands that stabilize the conformational ensemble
in one of the two states. Another important structural component of the
CDK2 is the DFG motif located in the binding site. The displacement of
the DFG domain from the DFG-in to DFG-out state opens up more space
within the binding pocket and allows for larger inhibitors to bind (type II
inhibitors) [31]. The binding of Type II inhibitors triggers an allosteric effect
blocking cyclin binding and leading to less associated toxicity. Recent work
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[31] revealed a first available type II inhibitor CDK2 cocrystal structure.
This intricate interplay between the ligand binding and CDK2 flexibil-

ity makes it an interesting target for an ensemble docking paradigm. We
queried the Protein Databank (PDB) and found crystal structures of ligands
mentioned in the above works [31, 30]. We collected 10 crystal structures
of the five ligands investigated by Knapp et al and Levinson et al [31, 30].
Supplementary Table 5 lists those crystal structures and the degrees of free-
dom of the respective ligands. In addition, the conformational features of
the crystalized CDK2 are also labeled.

With this data we evaluate the benefits of ensemble docking. We first
perform a re-docking experiment (docking each of the ligands to the native
receptor). Next, we perform the ensemble docking (cross-docking to multiple
receptors), where we dock the ligand to the full ensemble of the 10 crystal
structures.

2.3. Evaluation setup

2.3.1. RMSD Evaluation Metric

To quantify the quality of the ligand poses generated by docking methods,
we utilize the widely used metric, Root Mean Square Deviation (RMSD). The
input ligand conformation serves as the reference or ground truth ligand,
against which the RMSD of the docked pose is calculated. In all of our
experiments, we utilize the all-atom RMSD, incorporating all ligand atoms
in the calculation.

RMSD =

√√√√ 1

N

N∑
i=0

d2i ,

where N is the number of atoms and di is the distance of the ith atom of the
reference ligand and the docked pose.

In ensemble docking scenarios, where the ligand is cross-docked to a non-
native receptor, the native and non-native complexes are first aligned, and the
RMSD is subsequently calculated between the native pose and the predicted
docked pose.

Ligand poses with RMSDs under 2Å are typically regarded as high-quality
poses. In this study, we focus on docking particularly challenging and large
ligands. Thus, we establish several thresholds to better interpret the results.
Poses with RMSDs exceeding 6Å are deemed failed poses. While this thresh-
old is generous, it effectively filters out significantly inaccurate poses and
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allows for a thorough analysis of the rest of the results, revealing the power
of our approach. We determine the failure rate of the docking tools by iden-
tifying the number of docking runs that result in poses with RMSDs greater
than 6Å. For large ligands, we use additional thresholds of 2Å, 3Å, and 4Å
to distinguish between satisfactory and high-quality poses.

2.3.2. Evaluation Schemes

Docking tools generate multiple ligand poses as output, which are then
scored and ranked using a scoring function. Identifying the most represen-
tative docking output for RMSD evaluation can be challenging due to the
limitations of scoring functions, which may not always rank high-quality
poses favorably. To disentangle the effects of the scoring function from the
sampling process, we evaluate RMSD using several different schemas.“Top X
RMSD” refers to the RMSD of the best pose within the top X ranked poses.
For instance, “Top 1 RMSD” denotes the RMSD of the single top-scoring
pose produced by the docking method, while “Top 5 RMSD” represents the
best RMSD among the top 5 scored poses. Lastly, “Best RMSD” is the
RMSD of the highest-quality pose across all outputs, irrespective of their
scored rank.

3. Results

3.1. Incremental docking benchmark

We compare the performance of DINC-Ensemble to the state-of-the-art
methods, Vina and DINC, in docking large ligands. Figure 2 illustrates the
performance of all three methods on a large ligand dataset, with degrees of
freedom ranging from 7 to 33.

Figure 2A examines the failure rates for all three docking methods as the
ligand’s degrees of freedom increase. A run is considered failed if the RMSD
of the resulting docked pose exceeds 6Å. We evaluate the methods using four
different schemes: Top 1, Top 5, Top 10, and the Best pose uncovered by
docking (displayed in different facets of the plot). The cumulative failure
rate, shown on the y-axis, represents the number of failed poses in a subset
of the dataset with less than x degrees of freedom. The x-axis shows the
degree of freedom thresholds. Note that the total number of ligands in this
dataset is 92, and the y-axis limit is set to 92 to facilitate interpretation
within the context of the dataset size.
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All docking methods exhibit increasing failure rates for the Top 1 scoring
pose as the degrees of freedom increase. However, DINC-Ensemble shows
improved performance, reducing the number of failed ligands from approxi-
mately 60/92 (for Vina and DINC) to 40/92. When considering the Top 5
and Top 10 scoring poses, the failure rates decrease, with a noticeable per-
formance gap favoring DINC-Ensemble. For the Top 10 evaluation scheme,
DINC-Ensemble fails on only 10/92 ligands, whereas Vina and DINC fail
on more than 30/92. Furthermore, when examining the Best quality pose
generated by the docking methods, DINC-Ensemble and DINC fail on very
few ligands (less than 5), while Vina continues to have high failure rates.

Overall, this analysis provides several key insights. First, the incremental
approach of both DINC and DINC-Ensemble reduces failure rates, identifying
a ligand pose of less than 6Å for the majority of ligands. Second, these poses
are not always highly ranked by the scoring function, resulting in high failure
rates for the top-scoring poses in DINC. Third, DINC-Ensemble reduces the
failure rates among the top-scoring poses, indicating that the scoring func-
tion ranks the DINC-Ensemble poses better than those of Vina and DINC.
With advancements in scoring functions and their increasing reliability, the
performance of DINC-Ensemble is expected to improve.

Figure 2B provides a detailed analysis of the quality of poses successfully
docked under 6Å. The results presented are for the best docked pose, with
additional evaluation schemes outlined in Figure 1. The x-axis represents
the different docking methods, while the y-axis shows the number of ligands
docked below specific thresholds. Thresholds of 2Å, 3Å, and 4Å are presented
across different facets. While Vina identifies slightly more poses under 2Å,
both DINC and DINC-Ensemble achieve better performance for poses under
3Å and 4Å. Notably, DINC-Ensemble successfully docks over 60 out of 92
poses under 3Å.

Figure 2C displays an example of ligand poses docked by all three meth-
ods. Docked ligands are represented in red (DINC-Ensemble), yellow (DINC)
and green (Vina). In addition, the native crystal structure is overlayed with
the docking results and displayed in light blue.

It is important to note that throughout this analysis, DINC-Ensemble
was tested in a redocking setting, where each ligand was docked to a single
native receptor conformation. These experiments were designed to validate
the performance of the methods on large ligands. The subsequent sections
further explore the advantages of the ensemble approach.
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3.2. Ensemble docking case study
In this analysis, we compare the performance of DINC-Ensemble in a

redocking setting (docking ligands to a single native conformation) to its
performance in an ensemble setting, where ligands are docked to multiple
receptor conformations. The dataset used here is a diverse CDK2 ensemble
dataset of 6 ligands and 10 receptor conformations described in Supplemen-
tary Table 5. For each of the 10 crystal structures in the dataset, a single
redocking experiment and a single ensemble docking experiment were con-
ducted. Note that ensemble docking experiments described here include the
native receptor in the ensemble.

Supplementary Figure 1A presents RMSD values achieved in the redock-
ing setting on the x-axis and those achieved in the ensemble docking setting
on the y-axis. Each point corresponds to a docking run for one of the 10
data points from the CDK2 dataset (Supplementary Table 5). Values be-
low the diagonal indicate instances where ensemble docking yields a better
pose compared to redocking, while values on the diagonal represent cases
where the same quality pose is retrieved in both settings. Values above the
diagonal show cases where ensemble docking results in a worse pose than re-
docking. Pink rectangles highlight regions with high-quality poses (RMSDs
under 2Å). Performance is evaluated using the Best RMSD pose (regardless
of the scoring function rank).

Ensemble docking improves the quality of the docked pose for 5 out of
10 experiments when evaluated. In most of the remaining cases, ensemble
docking yields the results of equal quality as redocking, meaning that the
native receptor inside the ensemble had the best RMSD pose. We performed
additional experiments, excluding the native conformation from the ensem-
ble and those results are presented in the Supplementary Figure 2. Still,
ensemble docking is able to uncover lower RMSD poses for 5 out of 10 cases,
while for the other 5, the RMSD is higher than that achieved in the native
receptor.

Supplementary Figure 1B zooms into a particular case of ensemble dock-
ing for the Type II inhibitor K03861 (PDB: 5A14). This plot shows all poses
generated by the ensemble docking run for K03861, with the RMSD values
on the x-axis and the energy scores on the y-axis. The receptor conforma-
tion to which each pose is bound is indicated by the marker’s color, while
the receptor conformation type is indicated by the marker’s shape. An opti-
mal docking run should produce poses in the bottom-left corner of the plot,
identifying low scoring, low RMSD poses.
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For K03861, the only receptor conformation that achieves both low RMSD
and low energy is the native 5A14 receptor. Supplementary Figure 1C pro-
vides insight into this result. The 5A14 is the only receptor conformation
in the dataset in the DFG-out state (left, yellow pocket in Supplementary
Figure 1C). The DFG-out state features a larger binding site volume, accom-
modating Type II inhibitors like K03861 (yellow ligand on the left of Supple-
mentary Figure 1C). In contrast, the binding pocket of the DFG-in state has
a smaller volume and is “blocked” by the DFG loop (right, purple pocket in
Supplementary Figure 1C). It is known that the Type II inhibitors do not
bind to the receptors in DFG-in state [31]. The K03861 ligand is large and
would clash with the protein if placed in the DFG-in binding pocket (yellow
ligand on the right of Supplementary Figure 1C). This example illustrates
importance of having a representative ensemble. Docking to an ensemble
without a DFG-out representative would likely fail to identify a correct pose
for K03861 and possibly other type II inhibitor ligands. To highlight this
point, we show results for ensemble docking without the native receptor in
the ensemble in the Supplementary Figure 3.

Additionally, the energy scores of generated poses within different re-
ceptor conformations reveal that the energies are extremely high for the
cyclin-bound conformations (triangles). For some cyclin-bound conforma-
tions (crosses), negative energy scores are observed. Type II inhibitors are
known to stabilize the receptor in a state that prevents cyclin binding [31],
and it is interesting to see this trend reflected in the ensemble docking results.

3.3. Web Server and the Python package

DINC-Ensemble web server is freely available at: https://dinc-ensemble.
kavrakilab.rice.edu/. The input page prompts the user to provide a lig-
and structure, a reference receptor, a receptor ensemble, and an email (Figure
3). Additional parameters can be selected by the user, but are not required
as the defaults are provided. Upon submission, the user receives an email
that the job has been submitted along with a pointer to a progress page
where users can track the progress of submitted jobs. Once the ensemble
docking round has been processed the user receives an email with the link to
the results page. There, the user can see the list of ranked docking results
as well at visualize the top few predictions in the MolStar 3D viewer (PDBe
version). The Python package provides more flexibility for advanced users.
It is accessible at https://github.com/KavrakiLab/dinc-ensemble.
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4. Discussion

We developed the DINC-Ensemble parallel docking program to extend
the DINC incremental docking approach to the ensemble docking paradigm,
facilitating exploration of both receptor backbone flexibility and large lig-
and flexibility during docking. We evaluate the DINC-Ensemble program
through two case studies: first, assessing its incremental approach for large
ligands using a challenging dataset; second, in an ensemble docking scenario
of moderate-sized ligands docked to a diverse set of CDK2 receptor confor-
mations.

Docking large ligands with significant flexibility remains challenging for
traditional methods due to the expansive search space. The previous incre-
mental approach, DINC [27], demonstrated improved performance for large
ligands. In DINC-Ensemble, we update DINC with the newer docking engine
Vina1.2.0 [21], leading to improved performance on a large ligand dataset.
DINC-Ensemble achieves lower failure rates and better quality ligand poses
compared to both DINC and Vina1.2.0, particularly improving the quality
of the Top 5 and Top 10 scoring poses. This suggests that combining DINC’s
incremental approach with Vina1.2.0’s advanced search heuristics improves
pose quality for top-scoring results. As all traditional docking programs,
DINC-Ensemble is limited by the power of scoring functions and its per-
formance is expected to improve as better scoring functions emerge. Large
ligand docking remains challenging and to assess pose quality we utilized the
RMSD thresholds of 2Å, 3Å, and 4Å, while for docking smaller ligands a
stricter thresholds of 1Å and 2Å are used. There is still potential for access-
ing those lower RMSD pose values by increasing the number of replicas and
run time of docking and carefully tuning incremental approach parameters,
as showcased by Devaurs et al. [20].

The unique contribution of DINC-Ensemble is in combining the incremen-
tal approach of DINC with the ensemble docking paradigm. We showcase
the benefits that ensemble docking exhibits in a case study of medium size
ligands and the CDK2 ensemble. This case study is interesting because of
the scale of the receptor conformational change induced by cyclin binding as
well as a diverse set of ligands that induce allosteric effects [30, 31]. Ensemble
docking strategy can in some cases provide us with a pose of lower RMSD
that that of a redocking experiment (green markers in Figure 2A and Sup-
plementary Figure 2). Another interesting trend is observed for the ligand
K03861 labeled as a type II inhibitor. It is clear that docking this ligand
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would have failed if the ensemble did not include a unique conformation that
facilitates the binding of this inhibitor (5A14). This example hints on how
using a single receptor conformation could lead to missing a whole range of
ligands of a certain type in a virtual screening setting. It further emphasizes
the need for access to a representative ensemble for docking.

There are many challenges still to the ensemble docking paradigm and
potential for future advancements. Across our experiments we evaluated the
results using different evaluation schemes (i.e., Top 5, Top 10, Best) to ad-
dress the limitations of current scoring functions, highlighting the need for
improved scoring methods to ensure that high-quality poses are accurately
ranked. Better parameter tuning of the DINC-Ensemble and longer running
times could yield improved results for large ligand docking. Furthermore,
the performance of ensemble docking is highly dependent on the quality of
the receptor ensemble. Our method, EnGens [32], addresses this by apply-
ing unsupervised learning techniques to identify a representative ensemble,
underscoring the importance of ensemble diversity. Finally, there is a need
for a systematic benchmark of ensemble docking tools across a wider range
of targets.

The DINC-Ensemble web server (https://dinc-ensemble.kavrakilab.
rice.edu/) represents a novel and accessible platform for leveraging the
DINC-Ensemble program, catering to users across diverse computational
expertise levels. It offers the capability to download and manually ana-
lyze detailed results from all docking rounds, complemented by an intu-
itive overview available directly on the web interface. A notable strength
of the DINC-Ensemble implementation is its ability to perform parallelized
computations across multiple CPUs, enabling efficient processing of recep-
tor ensembles and replicas. For users requiring tailored workflows or high-
throughput docking, the associated Python package is available at https:

//github.com/KavrakiLab/dinc-ensemble, supporting deployment on cus-
tom computational resources. We anticipate that this resource will play an
important role in advancing efforts to integrate receptor flexibility into molec-
ular docking, addressing a critical need in the field.
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Figure 2: Docking performance on the large ligand case study. A) Cumulative failure rates
(the lower the better) for docking methods with increased ligand size. X-axis represents the
ligand size threshold. Y-axis shows cummulative failure rate. Facets correspond to distinct
RMSD evaluation schemas. Docking methods are color coded. B) Quality of the generated
poses (RMSD below 6Å) for the docking methods using the Best evaluation schema. Y-
axis shows the number of ligands that achieved RMSD below the given threshold. Facets
represent different RMSD thresholds. C) Docking result poses for a large ligand with
20 degrees of freedom (PDB: 1W92) are visualized across different models. The crystal
structure complex, displayed in light blue, is overlayed with each of the docking results.
The optimal pose from DINC-Ensemble is shown in red on the left (1.55Å). The pose from
DINC is shown in yellow in the center(4.39Å). The Vina result is shown in green on the
right (2.27Å).
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Figure 3: DINC-Ensemble Webserver: Submission Form (1), Job Processing (2) and Re-
sults Page (3). Different views are provided on the results page.
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